

Table of Contents

Mapping out Phase Diagrams of Halide Double Perovskites by Liana Alves	1
Magnetic Skyrmions in Epitaxial Films by Jordan Fuhrman	43
Proximity Induced Ferromagnetism in Pt/CoFe2O4 Hybrid Interfaces by Adam Goad	.54
The Development of a Simulation Model for calculating the Magnetic Field of a Complex Ferromagnetic Structure by Patricio Herrera	59
Characterizing Magnetic Properties of Micro-Scale Nd2Fe14B and SmCo5 Particles Using Cantilever Magnetometry by Laura Jennings	64
Surface Photovoltage Spectroscopy of Semiconductor Materials by Maranda Reed	69
Gate Dependent Transport and Scanning Tunneling Microscopy of a Graphene Device by Ryan Rodriguez	76

Liana Alves Ohio State Department of Chemistry and Biochemistry and Haverford College

ABSTRACT

The synthesis of the double perovskites Cs₂AgBiCl₆, Cs₂AgInCl₆, Cs₂NaInCl₆ from solution methods have been analyzed using x-ray diffractions. In order to understand what byproducts are being made in the complex synthesis of the double perovskites, multiple ternary phase diagrams have been constructed with each point representing a compound synthesized by either solution or solid state grinding methods. The ternary phase diagrams vary by halide X=Cl, Br, I and by the M³⁺ =Bi, Sb, In site with the constant AgX and CsX component. The phase diagrams help organize the synthesis data for any future research done on lead free halide double perovskites. Multiple synthesis attempts were made on the Cs2AgBil6 using different reagents and solvents, but the XRD is not conclusive to declare the perovskite form. The Cl-Bi and Br-Bi are complete phase diagrams, but the I-Bi diagram products indicate the system is not yet thermodynamically stable. Synthesis of AgBiBr₄, Cs₃BiBr₆, AgBi₂I₇ have no literature cited crystal structure and their x-ray crystallography images show promise for solving their structures.

Background and Introduction

In the past few years alone, the scientific community has seen a great spike in metal-halide perovskite research. What initially sparked the interest in these perovskites was their potential ability within photovoltaic technology. However, perovskites have not quite reached the efficiency of the today's dominating silicon technologies. The perovskite takes on the crystalized ABX₃ structure, with an organic cation A site, B the metal cation, and X being the halide anion. Lead-halide perovskites, PbX₃, have been greatly analyzed because of the potential ability in LEDs and solar energy devices¹. However, while their efficiency and spectra potential continue to amaze the scientific community, mass producing anything with lead brings up many negative environmental questions. As lead is toxic, people are rapidly trying to remove lead in all current and future products.

Research has begun on using lead alternatives like Sn2+ and Ti, however stability is a common probably in the synthesis of these perovskites where they disintegrate quickly over time when exposed to air². Due to the limiting factors of stability of these lead perovskites and the need of a 2+ cation, it was found that by expanding the search from the previous ternary ABX₃ to quaternary double perovskites may help improve the search for a viable lead alternative. The double perovskite contains the face cubic crystal structure, but expands the unit cell taking on a form of $A_2M^+M^{3+}X_6$ where you can use a 1+ and 3+ ions. For example, using cooper, silver, bismuth, or antimony as the M^{3+} site and silver as the M^+ site^{3,4}.

As followed in the continuation of McClure et. al⁴, the double perovskites sometimes produce unwanted irregular 3-2-9 impurities that take on the $A_3M_2^{3+}X_9$, which negatively effects the stability of the desired product. In addition, the method of synthesis of such double perovskites seems to not be fully clear on why hypophosphorous acid, H_3PO_4 is necessary. In order to analyze what reagents are at play, ternary phase diagrams can be used to help bring clarity into the synthesis of the double perovskites. In double halide perovskites it has been suggested that as you move down the halide groups the perovskites synthesize have better band gap properties, in other words absorbing more light. $Cs_2AgBiCl_6$ is yellow, and $Cs_2AgBiBr_6$ is orange, and the iodine perovskite therefore would be red/black color absorbing more light in the visible spectrum. However, iodine double perovskites have not been able to be successfully synthesize. Therefore, by creating a phase diagram the includes the iodine axis this will also help understand what might be the factors are contributing to the challenges of its synthesis, and how it's phase diagram compares to the other halide phase diagrams. Ultimately, these diagrams will help understand all the unwanted byproducts, or if there is any undiscovered combination of reagents forming that can be used as a tool for figuring out other combinations of lead free double perovskites that may be able to be synthesized. The phase diagrams will also produce a way of coming up with new chemical formula combinations in the synthetic attempt to make the double perovskites, when certain reagents are less financially practical or more challenging to work with. Phase diagrams give a comprehensive understanding of chemical systems, with different pressures and temperatures. However, the phase diagrams described in this paper will have zero degrees of freedom, meaning pressure and temperature will remain constant. Each line drawn on the phase diagrams between two points, points are synthesized products, describes a composition of the two products or the points the line is between. And moving off the line into the empty space of the phase diagram would describe a composition of multiple products⁵. In summary, phase diagrams help show;

- What factors contribute to the challenges of its synthesis
- How the halide phase diagrams differ from one another
- All the unwanted byproducts
- Relative amounts and ratios of each of the elements
- Methods of creating the purist compounds
- A tool for using new chemical formula combinations
- A comparison across the different halide perovskites products

II. Methods

There were two methods used for the synthesis of compounds made, solid state grinding and solution method. For the synthesis of all double perovskites $Cs_2AgBiCl_6$, $Cs_2AgInCl_6$, $Cs_2NaInCl_6$ $Cs_2AgSbCl_6$, or any compound that will fall within the center of the phase diagram the solution method was used. In general, for any compound made which would lie on the axis that included the M^{3+} site, ie; Bi, Sb, In which includes always a dominant 3-2-9 irregular perovskites $Cs_3Bi_2Cl_6$, $Cs_3Bi_2Br_6$, $Cs_3Sb_2Cl_6$ was synthesized by solution method.

The bismuth containing compounds were dissolved in 10mL of 12.1M HCl that was added to a 50mL beaker heated to 100° C, then using the correct 2:1:1 molar ratio the solid Bi₂O₃ (\geq 99.0%, J.T Baker) was added to the beaker with constant stirring till dissolved. Then the proper amount of the AgCl and AgBr was added to the beaker, wait about 30 minutes till the majority of reagent dissolves. The AgCl and AgBr were precipitated from an in house prepared aqueous solution of AgNO₃ (99.9+%, Alfa Aesar) and NaCl (ACS Reagent, GFS Chemicals) or KBr (99+%, Alfa Aesar). Lastly, the CsCl (\geq 99.0%, Aldrich) and CsBr, was prepared in house by reacting Cs2CO₃ (99+%, Strem Chemicals) with HBr (Fluka, \geq 48%). Upon the addition of CsX to the hot solutions visually the precipitant formed in all double perovskites synthesized and 3-2-9s. All solution samples were collected on filter paper and washed with ether.

The antimony containing compounds were synthesized in the same method as Bismuth but using Sb_2O_3 (\geq 99.0%, Aldrich). The indium containing compounds were synthesized using In_2O_3 (\geq 99.0%, Aldrich) and 10 mL of 6 M HCl then continuing the same methods as the bismuth. Any other compounds formed using the M^{3+} site used solution method as described above with the only difference marking the change in concentrated HCl depending on Bi, Sb, or In [CsInCl₄, Ag₃InCl₆, AgBiC₄]. The Indium compounds were synthesized a second time using a glove bag with nitrogen air during the grinding of the products in the mortar and pestle. However, products still took on water during XRD preparation.

All solution method compounds made were stirred to evaporated dryness and were left overnight. The samples were then grinded on an agate mortar and pestle for 20 minutes and prepared on pmma acrylic slides.

50% solution of H_3PO_3 was added to a separate batch of $Cs_2AgBiCl_6$ and $Cs_2AgSbCl_6$, and the $Cs_3Bi_2Cl_6$ and $Cs_3Sb_2Cl_6$ at room temperature, along with the different reagents to test the dissolving

properties of phosphoric acid. First test tubes with small unmeasured amount were used as a visual test of dissolution. In a 50mL beaker about 1 gram of the above double perovskites and 3-2-9 were stirred with the acid and then drained, and then vacuum filtrated and prepared for analysis by grinding and then prepped on a stainless steel x-ray slide.

All compounds synthesized the lie on the AgX and CsX of the phase diagram were made using solid state grinding methods. Using varying molar ratios, the in house preparations of AgCl, AgBr, and Agl, which was made with AgNO₃ (99.9+%, Alfa Aesar) and KI (ACS Reagent, GFS Chemicals). CsCl (\geq 99.0%, Aldrich), and CsBr, and CsI made with the Cs2CO₃ (99+%, Strem Chemicals) with and HIO₃. The regents were grinded together with an agate mortar and pestle till a loose powder form, about 15 minutes before heating. Then the products were placed in an alumina crucible for their heating in a box furnace in air at 200°C for 72 hr. It was found that in order to achieve the most phase pure version of CsAgCl₂ sample needed to be heated at 400°C for 10 hr.

In addition, while attempting to make a low temperature unreported literature product of $CsAgl_2$ and the varied molar ratio product of $CsAg_{3/2}I_{2/5}$ products was synthesized multiple times at different temperatures and times 72 hr 200°C, 12 hr 200°C, 10 hr 100°C. All products were then re grinded for 20 minutes and prepared on are pmma acrylic slides for analysis.

 $Cs_3Bi_2Cl_6$ and Cs_3BiCl_5 was synthesized using solid state grinding techniques with the correct molar ratio of CsCl and the prepared in house $Cs_3Bi_2Cl_9$.

 Cs_2AgBil_9 was synthesized with three different reagents combinations. One from the in house preparation of Cs_2Agl_3 and Bil_3 that was grinded in a solid state reaction and heated for 18hr and 150^{0} C. And synthesized with in house $CsAg_2l_3$, CsI, and Bil_3 with the same procedure. $Cs_2Agl_3 + Bil_3 \rightarrow Cs_2AgBil_9$

 $1/2 \operatorname{CsAg}_2I_3 + 3/2 \operatorname{CsI} + \operatorname{BiI}_3 \rightarrow \operatorname{Cs}_2\operatorname{AgBiI}_9$

Then, upon heating one batch was separated for a 72hr heating cycle while the other was mixed with 4mL of hydroiodate acid and 1mL of Hypophosphorous Acid (50wt. % H_2 0, Sigma Aldrich), and the other was heated on a stir plate with 3mL of H_3PO_2 .

The third method included grinding together the AgI, BI3, and CsI, reagents with three different solvents, methanol (99+%, Fischer Chemical), ethanol (200 proof, Decon Lab) and acetonitrile (99+%, Fischer Chemical) in a beaker heated to 150° C 10mL. The appropriate solvent was added and stirred, color change can be seen right away and heated to dryness with initial XRDs. Then an addition of 3mL of H₃PO₂ acid and 5mL of methanol was re-added to the methanol solvent attempt, but could not be heated to dryness. The ethanol solvent attempt was then heated to 350° C for 48hr and grinded for XRD. The acetonitrile compound was heated at 150° C for 48hr and grinded again for XRD preparation. All slides used are pmma acrylic.

X-ray powder diffraction (XRPD) data was collected on a Rigaku Miniflex II benchtop diffractometer (30kV 15mA, sealed Cu X-ray tube) with a NaI scintillation detector. For the products synthesized by McClure et. al⁴ [Cs₂AgBiBr₆, Cs₃Bi₂Br₉, Cs₃Bi₂I₉] used x-ray powder diffraction (XRPD) collected on a Bruker D8 powder diffractometer (40 kV, 50 mA, sealed Cu X-ray tube) equipped with an incident beam Ge 111 monochromator and Lynx Eye position sensitive detector.

Refinements of laboratory XRD data was carried out using TOPAS Academic software package with both Pawley and Rietveld refining to analyze the purity, crystal structure, and phase identification.

II. Results and Discussion

Each section includes a theoretical phase diagram constructed by using points that have been stated in literature to exist. Each ternary phase diagram has zero degrees of freedom where pressure and temperature are being kept constant.

Key of phase diagrams

Successful synthesis of desired product

Successful synthesis of double perovskite

Successful synthesis of literature reported product but no detail crystal structure reported (only includes lattice parameters)

Successful synthesis of literature reported product, but includes a mixture of two products. Not thermodynamically stable

 ${\bf X}$ Unsuccessful attempt at product with synthesis methods used or is the compositional mixture of the axis of the phase diagram

X XRD does not produce a sufficient pattern to declare perovskite form is present

Chlorine-Bismuth Results

Difference Summary of Theoretical to Experimental Diagram

The phase diagram constructed in the chlorine includes three differences.

- 1. The product AgBiCl₄ was not able to be successful synthesized due to its hygroscopic properties. The product was a mushy whitish purple color and was resynthesized multiple times with different heating techniques to try to get a dry powder for XRD preparation, but no successful synthesis was made.
- 2. The CsAg₂Cl₃ point included a compositional mixture of CsAgCl₂ and AgCl which would be expected by the phase diagram.
- 3. Cs_3BiCl_6 was not a pure compound and XRD pattern shows that 3-2-9 dominated the product, but some of the desired product as probably made. May not be a thermodynamic equilibrium.

XRD Chlorine-Bismuth Results

Product	Space group	Rwp

⁶ Cs ₂ AgCl ₃	Pnma #62	15.66
*(includes CsAgCl ₂		
impurity)		

Cell Parameters	Å
а	13.2104
b	4.5528
C	13.7611

Site	Wyckoff site	x	У	Z	Beq
Ag_1	4c	0.2514	1⁄4	0.3014	4.9976
Cs_1	4c	0.1703	1/4	0.0186	3.5104
Cs_2	4c	0.0121	1/4	0.6730	3.5104
Cl_1	4c	0.1296	1/4	0.4515	3.3696
Cl_2	4c	0.4474	1/4	0.3613	3.3696
Cl_3	4c	0.2798	1⁄4	0.7060	3.3696

⁶ CsAgCl ₂	Cmcm #63	15.54	Successful synthesis, but CsAgCl2 has a minor
			presence is product

	Cell Parameters		Å			
а			4.3712			
	Sijte	Wyckoff site	Х	Y19.1764	Z	Beq
	Ag_1	4c	0.0000	0 54686 4	1⁄4	3.2036
	Cs_1	4c	0.0000	0.1988	1/4	4.0099
	Cl_1	4c	0.0000	0.7770	1⁄4	3.6987
	Cl_2	4c	0.0000	0.0676	1⁄4	3.3696

Successful synthesis

 $\mathsf{CsAg}_2\mathsf{Cl}_3$ mixture of CsAgCl_2 and AgCl


```
X Product is a compositional mixture between the AgCl point and CsAgCl2
```

⁷⁸ Cs ₃ BiCl ₆	C12/c1 #15	15.54
*(Dominant Cs ₃ BiCl ₉)		

Cell Parameters	Å
а	26.8906
b	8.2985
С	13.1646
al	90
be	99.9357
ga	90

Site	Wyckoff site	x	У	z	Beq
Bi_1	4c	1⁄4	1⁄4	0.0000	-5.0937
Bi_1	4e	0.0000	0.2043	1⁄4	-5.0937
Cs_1	8f	0.4781	0.2114	0.0615	-5.0937
Cs_2	8f	0.1584	0.2494	0.2953	-10
Cs_3	8f	0.3357	0.1908	0.3445	-10
Cl_1	8f	0.2393	0.3546	0.1571	-10
Cl_2	8f	0.1641	0.2732	0.0140	-10
Cl_3	8f	0.3991	0.1413	0.0431	-10
Cl_4	8f	0.0867	0.6799	0.2604	-10
Cl_5	8f	0.0633	0.2870	0.4114	-10
Cl_6	8f	-0.0083	0.0704	0.6150	-10

Mixture of two products may not be at thermodynamic equilibrium

Cell Parameters	Å
а	18.6899
b	7.6259
С	13.2378

Site	Wyckoff site	x	У	z	Beq
Bi_1	4c	0.0004	1/4	0.2611	0.5090
Bi_2	4c	0.6824	1⁄4	0.5846	0.4390
Cs_1	4c	0.4169	1⁄4	0.5910	2.6980
Cs_2	4c	0.2501	1/4	0.2499	1.8930
Cs_3	4c	0.0876	1⁄4	0.5843	1.6890
Cl_1	4c	0.0909	1/4	0.0922	2.5320
Cl_2	4c	0.2577	1/4	0.7453	1.2190
Cl_3	4c	0.4173	1⁄4	0.0758	1.9780
Cl_4	8d	0.0764	-0.0128	0.3482	3.1490
Cl_5	8d	0.2538	-0.0145	0.0035	3.1020
CI_6	8d	0.4150	0.4884	0.3392	4.1600

Successful synthesis

⁴ Cs ₂ AgBiCl ₆	Fm-3m #225	23.17

	Cell Parameters			Å				
	a				10.7853			
S	te p	Wyckoff site	x	У	10.7853	Z	Beq	
A	g_1	4a	0.0000	0	.0009853	0.0000	0.9094	
Bi	i_1	4b	1/2	0	.0000	0.0000	-2.1852	
C	s_1	8c	1⁄4	1⁄4		1⁄4	-0.7178	
C	_1	24e	0.2432	0	.0000	0.0000	-1.6924	

Successful synthesis of double perovskite, adding $\rm H_3PO_2$ acid is necessary to dissolve the 3-2-9 and to give the purist XRD, see procedure

Bromine-Bismuth Results

Difference Summary of Theoretical to Experimental Diagram

- 1. $CsAg_2Br_3$ product does not exist but the point is the expected ratio of composition of AgBr and $CsAgBr_2$
- 2. AgBiBr₄ is a curry yellow compound that has been reported in literature but no detail crystal structure reported
- 3. Cs₃BiBr₆ is bright yellow compound that has been reported in literature but no detail crystal structure reported

XRD Results of Bromine-Bismuth Results

Product	Space group	Rwp

Cell Parameters	Å
a	13.7671
b	4.7222
С	14.3745

Site	Wyckoff site	x	У	Z	Beq
Ag_1	4c	0.2497	1⁄4	0.2999	3.8000
Cs_1	4c	0.1733	1⁄4	0.0171	3.6500
Cs_2	4c	0.1273	1⁄4	0.6510	3.6500
Br_1	4c	0.1299	1⁄4	0.4549	4
Br_2	4c	0.4470	1⁄4	0.3623	4
Br_3	4c	0.2776	1⁄4	0.7100	4

⁶ CsAgBr ₂	Cmcm #63	10.19

Cell Parameters	Å
а	4.5723
b	19.8795
C	5.9435

Site	Wyckoff site	x	У	Z	Beq
Ag_1	4c	0.0000	0.2006	1⁄4	4.2439
Cs_1	4c	0.0000	0.4184	1⁄4	3.4133
Br_1	4c	0.0000	0.7732	1⁄4	3.3139
Br_2	4c	0.0000	0.0664	1⁄4	3.3139

Successful synthesis

Cell Parameters	Å
а	7.9614
b	7.9614
С	9.8480

Site	Wyckoff site	x	У	Z	Beq
Cs_1	1a	0.0000	0.0000	0.0000	3.5069
Cs_1	2d	1/3	2/3	0.6668	3.5069
Bi_1	2d	1/3	2/3	0.1932	0.9935
Br_1	3e	1/2	0.0000	0.0000	3.3082
Br_2	6i	0.1664	0.8336	0.3398	3.3082

$^{4}Cs_{2}AgBiBr_{6}$	Fm-3m #225	20.96
(Bruker D8)		

Cell Parameters	Å
а	11.2712
b	11.2712
C	11.2712

Site	Wyckoff site	х	У	Z	Beq
Ag_1	4a	0.0000	0.0000	0.0000	1.7651
Bi_1	4b	1/2	0.0000	0.0000	1.0901
Cs	8c	1⁄4	1⁄4	1⁄4	3.4308
Br	242	0.2503	0.0000	0.0000	3.6568

Successful synthesis

Cell Parameters	Å
а	12.1533
b	12.1533
С	11.1533

Successful synthesis using Pawley refinement in process of solving for sites

⁸ Cs ₃ BiBr ₆	hexagonal	8.093

Cell Parameters	Å
а	7.9598
b	7.9598
С	9.8398

Successful synthesis using Pawley refinement in process of solving for sites

Iodine-Bismuth Results

Difference Summary of Theoretical to Experimental Diagram

- 1. All the gray squares indicated that the products are probably not at thermodynamic equilibrium and would need to be re-heated. See XRDs below to see the mixture of products in each gray square synthesis.
- 2. AgBi_{2}I_{7} is a black compound with no reported crystal structure but XRD shows pure compound
- 3. CsAgl₂ may contain a metastable intermediate seen when product is heated for less than 18 hours. Product changes color upon the addition of water into bright sunset orange hue, XRD of metastable and XRD of prolonged heated CsAgl₂ that has a mixture of Cs₂Agl₃ and CsAg₂l₃ contain many peak differences.
- 4. Different synthesis attempts were made for Cs₂AgBil₆, all XRDs produced the same looking product regardless of the synthesis technique. XRD can tell a cohesive tell of what the product made is. When heated the unknown red product made to 350°C product turns white gray and XRD shows Cs₂AgI₃.

XRD Results of Iodine-Bismuth Results

Product	Space group	Rwp

⁶ Cs ₂ AgI ₃	Pnma #62	15.75

Cell Parameters			Å			
			14.5933	14.5933		
Sile	wyckon site	X	y _{4.9533}	2	вед	
Ag_1	4c	0.2550	^{1⁄2} 15.3026	0.3055	-1.0956	
Cs_1	4c	0.1740	1/4	0.0204	-1.0956	
Cs_2	4c	0.0141	1⁄4	0.6767	-0.3664	
l_1	4c	0.1319	1⁄4	0.4522	-0.8702	
I_2	4c	0.4427	1⁄4	0.3634	-0.8702	
I_3	4c	0.2759	1/4	0.7131	-0.8702	

Successful synthesis

Pnma #62	18.338
ł	Pnma #62

Cell Parameters	Å
а	13.7411
b	6.2288
С	11.0706

Site	Wyckoff site	x	У	Z	Beq
Ag_1	8d	0.0018	0.0059	0.3339	0.6627
Cs_1	4c	0.1788	1⁄4	0.9909	0.6627
I_1	4c	0.1270	1⁄4	0.4942	0.0000
I_2	4c	0.3597	1⁄4	0.2856	0.0000
I_3	4c	0.3833	1⁄4	0.6912	0.0000

Successful synthesis gI2 50:50 composition of CsAg2I3 and Cs2AgI3

X Product is a compositional mixture of AgI and CsAgI_2

$CsAgI_2$ metastable

Turns bright orange upon addition of water when Cs_2AgI_3 white and $CsAg_2I_3$ sees no color change. XRD has unaccounted peaks but not clean enough to figure out crystal structure. May be an intermediate phase.

⁹ Cs ₃ Bi ₂ I ₉	P63/mmc #194	20.43
(Bruker D8)		

Site	Wyckoff site	x	У	z	Beq
Cs_1	2b	0.0000	0.0000	1⁄4	3.4422
CS_2	4f	1/3	2/3	0.5824	3.4422
Bi_1	4f	1/3	2/3	0.1544	0.8086
I_1	6h	0.5080	1.0160	1⁄4	2.3009
I_2	12k	0.1626	0.3251	0.0803	2.3009

^{8,11} Ag ₃ Bil ₆	R3 m #166	16.78
*(includes AgBi ₂ I ₇)		
impurity)		

Site	Wyckoff site	x	У	Z	Beq
Ag_1	За	0.0000	0.0000	0.0000	0.1263
Ag_2	3b	0.0000	0.0000	1/2	20
Bi_1	За	0.0000	0.0000	0.0000	0.8304
I_1	6c	0.0000	0.0000	0.7540	0.5585

XRD data suggests either system is not thermodynamically stable or follows that products Ag_3BiI_6 and $AgBiI_4$ only used XRD primitive measurement to identify crystal structure and could not be reproduced and the actually Ag-Bi-I system consists of Ag_2BiI_5 and $AgBi_2I_7^{11}$

Cell Parameters	Å
а	12.3763
b	12.3763
С	12.3763

Successful synthesis using Pawley refinement in process of solving for sites

¹¹ Ag ₂ Bil ₅	R3 m #166	11.41
⁸ AgBil ₄	Fd3 m #227	11.41

Both XRD of $AgBiI_4$ and Ag_2BiI_5 were the same and included a mixture of each other with the same peaks in the XRD

Cell Parameters	Å
a	12.1201
b	12.1201
c	12.1201

 Ag_2BiI_5

Cell Parameters	Å
а	4.6223

b	4.6223
C	18.6304

Products have not yet reached equilibrium see Ag₃Bil₇ for more details

3Bil₆ dominating Cs₃Bi₂l₉ product, not conclusive to declare perovskite form

The different solvent methods and reagents combinations all yielded identical XRD patterns, the pattern is problematized by the 3-2-9 iodine having many hkl peaks as well as the Cs₂AgI₃. Adding H₃PO₂ was unsuccessful at dissolving the 3-2-9 and products made were mushy and XRDs were taken using petroleum jelly but background is too high to peak out non-3-2-9 peaks.

 $\rm Cs_2AgBil_6\,heated$ at 350°C XRD shows $\rm Cs_2Agl_3$ as remaining product

Indium-Chlorine Results

Phase Diagram does not represent a full theoretical list of all potential products of the diagram

Difference Summary of Theoretical to Experimental Diagram

- 1. Ag₃InCl₆ is hygroscopic and not successfully synthesized
- 2. CsAg₂Cl₃ * see Cl-Bi Phase Diagram
- 3. Cs₂AgInCl₆ is hygroscopic and XRD is too noisy to confirm the double perovskite phase
- 4. Gray squares indicate that the Cs-In-Cl products look like a mixture of products and may not have reached equilibrium, but products are also hygroscopic

XRD Chlorine-Indium Results

Product	Space group	Rwp
---------	-------------	-----

¹² Cs ₃ InCl ₆	P4 #75	11.026
*(includes CsInCl ₄		
impurity)		

Cell Parameters		Å		
а		11.0786		
b		11.0786		
С		11.9236		
CsInCl ₄	Pmcn #62	11.026		

Cell Parameters	Å
а	11.0360
b	11.0360
С	11.0360

Cs₂AgInCl₆ perovskite phase not definitive to declare, product is hygroscopic

X Used petroleum jelly on XRD cannot declare double perovskite phase

Cell Parame	eters		Å			
a			10.5265			
bSite	Wyckoff site	x	10 5265	Z	Beq	
Na_1	4a	0.0000	10,9985	0.0000	1.9700	
In_1	4b	1/2	1/2	1/2	1.9700	
Cs	8c	1/4	1/4	1⁄4	2.7560	с
Cl	24e	0.2518	0.0000	0.0000	2.4643	f
L	1	•	1	1	1	ul

synthesis

Chlorine- Antimony Results

38

Future work needs to be done to complete both the potential products listed on the axis of In-Cl and Sb-Cl phase diagram. H_3PO_2 also dissolves the 3-2-9 product and therefore theoretical would aid in the purity of synthesis of the double perovskite phase.

Product Goal	Method of Synthesis	concentration soultion (M)	Temperture/Time (oC/hr)	Successful	Product Made	Color
Cs3Bi2Cl9	solution	12.1 HCl	100 solution	ves	Cs3BiCl9	white
¹⁴ AgBiCl4	solution	12.1 HCl	100 solution	hvgroscopic	n/a	silver
Cs2AgBiCl6	solution	12.1 HCl	100 solution	ves	Cs2AgBiCl6	vellow
CsAgCl2	solid grinding	n/a	400 */ 72hr	ves	CsAgCl2	white
Cs2AgCl3	solid grinding	n/a	200/ 72hr	ves	Cs2AgCl3	white
CsAg2Cl3	solid grinding	n/a	200/ 72hr	no	CsAgCl2 and AgCl	white/purple
CsAgBr2	solid grinding	, n/a	, 200/ 72hr	ves	CsAgBr2	white/vellow
Cs2AgBr3	solid grinding	n/a	200/ 72hr	ves	Cs2AgBr3	white
CsAg2Br3	solid grinding	, n/a	, 200/ 72hr	, no	CsAgBr2 and AgBr	white/vellow
CsAgI2 *	solid grinding	n/a	200/ 72hr	maybe	CsAgI2 (2-1,1-2)	light orange
Cs2AgI3	solid grinding	, n/a	, 200/ 72hr	ves	Cs2AgI3	white
CsAg2I3	solid grinding	n/a	200/ 72hr	, ves	CsAg2I3	orange
CsAg1.5I2.5	solid grinding	n/a	200/ 18hr	, no	CsAg2I3 and AgI	orange
Cs3BiCl6**	solid grinding	n/a	200/ 72hr	some	Cs3BiCl6 Cs3Bi2Cl9	white
	0 0	5mL 12.1 and 5mL				
Cs3InCl4	solution	6	150 solution	some	Cs3InCl4 CsInCl4	white
		5mL 12.1 and 5mL		. ·		1.11
CSINCI4	solution	6 5ml 12 1 and 5ml	150 solution	nygroscopic	yes	white
Ag3InCl6	solution	6	150 solution	hygroscopic	n/a	white
0		5mL 12.1 and 5mL	150 sol and 200/	70 1		
Cs2AgInCl6	solution	6	18hr	hygroscopic	n/a	white/purple
		5mL 12.1 and 5mL				1.1.
Cs2NaInCl6	solurion	6	18 hr	yes	Cs2NaInCl6	white
AgBiBr4	solution	HBr	150 solution	yes	AgBiBr4 Cs3BiBr6 mostly	curry yellow
Cs3BiBr6	solution	HBr	150 solution	some	Cs3Bi2Br9?	bright yellow
Cs3Bil6	solid grinding	n/a	150/ 72 hr	no	Cs3Bi2I9	bright red
		,			mixture AgBil4	
AgBil4**	solid grinding Bil3	n/a	150/ 72 hr	some	Ag2Bil5	black
Ag2Bil5**	solid grinding Bil3	n/a	150/ 72 hr	some	Ag2Bil6 ?	black
AgBi2I7	solid grinding Bil3	n/a	150/ 72 hr	yes	AgBi2I7	black
Ag3Bil6**	solid grinding Bil3	n/a	150/ 72 hr	yes	Ag3Bil6 ?	black
Cs2AgBil6'	sg (2-1)	n/a	150/ 72 hr	<i>.</i> maybe	Cs2AgI3 Cs3Bi2I9 ?	dark red
Cs2AgBil6'	sg (1-2) and Csl	n/a	150/ 72 hr	maybe	Cs2AgI3 Cs3BiI9 ?	dark red
Cs2AgBil6'	solvent methanol	n/a	150/ 72 hr	maybe	Cs2AgI3 Cs3Bi2I9 ?	red
Cs2AgBil6'	solvent ethanol	n/a	150/ 72 hr	maybe	Cs2AgI3 Cs3Bi2I9 ?	red
-	solvent				Cs2AgI3 and	
Cs2AgBil	acetonitrile	n/a	350/ 72 hr	maybe	Cs3Bi2I9	red
Cs2AgBil6	solvent etch and	n/a	n/a	liquid	n/a	rod
COLARDIIO	1151 04	11/a	ii/a	nquiù	ηα	ieu

*May include a metastable product, but at thermodynamic equilibrium CsAgI_2 does not exsit