

POEM: Physics of Emergent Materials

Nandini Trivedi

L1: Spin Orbit Coupling L2: Topology and Topological Insulators

Reference: Bernevig Topological Insulators and Topological Superconductors

Tutorials: May 24, 25 (2017)

Scope of Lectures and Anchor Points:

- 1.Spin-Orbit Interaction
- atomic SOC
- band SOC: dresselhaus and rashba
- symmetries: time reversal, inversion, mirror
- 2.Berry Phase and Topological Invariant
- two level system
- "graphene" + different mass terms + spin
- 3.The many Hall effects
- integer qhe and chern #

Scope of Lectures and Anchor Points:

- 1.Spin-Orbit Interaction
 - atomic SOC

DAY1

- band SOC: dresselhaus and rashba
- symmetries: time reversal, inversion, mirror

2.Berry Phase and Topological Invariant

- two level system
- "graphene" + different mass terms + spin

3.The many Hall effects

• integer qhe and chern #

DAY2

My philisophy.... choose simplicity and insight over completeness

<u>Toy Problems:</u>

<u>Day 1:</u>

- 1) 1d SOC: spin-momentum locking
- 2) Two level system (Spin 1/2 in a magnetic field) and Berry Phase
- 3) Graphene: dirac points protected by inversion and TR

<u>Day 2:</u>

- 4) 1d SSH [polyacetylene] model and topological invariant
- 5) Graphene continued:
- Break inversion: sublattice potential
- Break TR: Haldane mass

...with a little help from my friends

• • •

Basics/Repository

- Pauli Matrices
- Symmetries: Inversion, Mirror, Time Reversal
- Polar vs Axial (pseudo) vector

Symmetries:

- Time Reversal
- Inversion
- Mirror

Time Reversal (without spin)

Definition:

$$T: t \to -t \qquad TR \Rightarrow [H, T] = 0$$

Transformation of various operators under T

$$T\hat{x}T^{-1} = \hat{x} \qquad T\hat{p}T^{-1} = -\hat{p} \qquad TiT^{-1} = -i$$
$$T\hat{x}, \hat{p}T^{-1} = Ti\hbar T^{-1} = -[\hat{x}, \hat{p}] = -i\hbar$$

$$Tc_j T^{-1} = c_j$$
 $Tc_k T^{-1} = c_{-k}$ $Th(k)T^{-1} = h(-k)$

$$T = K \qquad T^2 = 1$$

K:Complex conjugate

Definition: Time Reversal (with half integer spin)

$$T: t \to -t$$
 $TR \Rightarrow [H, T] = 0 \Rightarrow T |\Psi\rangle$ and $|\Psi\rangle$
are both eigenvectors with
eigenvalue E
 $T = e^{-i\pi S_y} K$ $T^2 = -1$
 $T^2 = -i\sigma_y i\sigma_y KK = -\sigma_y^2 = -1$
 $\vec{S} = (\hbar/2)\vec{\sigma}$ $e^{-i\pi\sigma_y/2} = -i\sigma_y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
 $Tc_{j\uparrow}T^{-1} = -c_{j\downarrow}$
 $Tc_{j\downarrow}T^{-1} = c_{j\uparrow}$
Same for dagger operators

Polar vs Axial

vectors

Saturday, May 20, 2017 7:43 PM

Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

- atomic SOC
- band SOC: dresselhaus and rashba
- symmetries: time reversal, inversion, mirror
- 2.Berry Phase and Topological Invariant
- two level system
- graphene
- 3.Hall effects
- integer qhe and chern #

Atom SOC

Spin-Orbit Coupling

When is Spin Orbit coupling large? What materials?

Transition Metals

		Atom SOC
s shell		p shell
L = 0	Transition Metals	L = 1
1 IA IA I Hydrogen I ^{3¹} 3 ^{6.941} 4 9.012 Bee Beryllium Hei2 ³ 11 ^{22.990} 12 ^{24.305}	d shell $L = 2$ $ \begin{array}{c} 13 & 14 & 15 & 16 \\ 111A & 1VA & VA & VI \\ 3A & 4A & 5A & 6A \\ \hline 5 & 10.811 & 6 & 12.011 & 7 & 14.007 \\ \hline 8 & C \\ 13 & 20.92 & 14 & 20.06 & 15 & 30.974 & 16 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Na Mg Sodium Mg [Nej3s ¹] Mg 19 39.098 20	3 4 5 6 7 8 9 10 11 12 III B	Clorine Argon ¹⁷ / _{23p4} 78.972 35 79.904 36 84.80
Potassium (Arides ¹ 27 64 468 20 84 468 20 87 62	Sc Ti V Cr Mn Fe Cobalt Ni Copper Zinc Gallium Ge Assenic Arsenic	e Br Kr ¹⁴²⁷⁶ Bromine Krypton ¹²⁷⁶ C 126 994 127.0 C 126 994 C 127.0 C 126 994 C 127.0 C 126 994 C 127.0 C 128 994 C
37 Bb Rubidium Sr Rubidium Sr I(55) ¹ Sr	39 40 A1 A2 A3 A4 A4 A5 A6 A7 A8 A9 A9 A0 A1 A1 A1 A2 A3 A4 A4 A5 A4 A5 A4 A5 A4 A5 A4 A4 A5 A4 A4 A5 A4 A5 A4 A5 A4 A5 A4 A4 A5 A5 <td< th=""><th>e ium s²²sp⁴ b i b i b i b i b i b i b i b i b i b i b b i b b b b b b b b b b</th></td<>	e ium s ²² sp ⁴ b i b i b i b i b i b i b i b i b i b i b b i b b b b b b b b b b
55 132.905 Cs cesium (Xel64) 56 137.327 Ba Barium (Xel64)	57-71 72 178.49 73 180.948 74 183.85 75 186.20 76 190.23 77 192.22 78 195.08 79 196.967 80 200.56 81 204.383 82 207.2 83 208.980 84 10 10 10 10 10 10 10 10 10 10 10 10 10	208.982] 85 209.987 Att Astatine [xe]4rl ⁴ sa ¹⁰ 6x ² 6p ⁵ Rado [xe]4rl ⁴ sa ¹⁰ 6x ² 6p ⁵
87 223.020 Fr Francium (Rn)(7s ¹ 88 226.025 Radium (Rn)(7s ²	89-103 104 to i 105 to i 105 to i 105 to i 105 to i 106 to i 107 to i 108 to i 109 to i 100 to i 109 to i 109 to i 109 to i 100 t	Ununseptim 07x37p4* Unuseptim (Rn)51 ¹⁴ 6d ¹⁰ 7x ² 7p ⁵ Unuoctium (Rn)51 ¹⁴ 6d ¹⁰ 7x ² 7p ⁵
f shell	tende les 57 138.906 58 140.115 59 140.908 60 144.24 61 144.913 62 150.36 63 151.966 64 157.25 65 158.925 66 162.50 67 164.930 68 167.26 69 168.934 69 168.934 69 168.934 69 168.934 69 168.934 69 168.934 69 168.934 69 168.934 69 169 169 169 169 169 169 169 169 169	ed with a * are unknown and the listed values are predicted. TO 173.04 Tterbium [Xej4r ¹⁴ 6s ²] T1 174.967 Luu Lutetium [Xej4r ¹⁴ 6s ²]
L = 3	hide les Actinium mmgde ¹ /2 ² 2 ² /2 ²⁸ 90 ^{232,038} 91 ^{231,036} 92 ^{238,029} 93 ^{237,048} 94 ^{244,064} 95 ^{243,061} 96 ^{247,070} 97 ^{247,070} 98 ^{251,080} 99 ⁽²⁵⁴⁾ 100 ^{257,095} 101 ^{258,1} Mc Berkelium mmgd ² /2 ² 2 ^{38,029} 91 ^{231,036} 92 ^{238,029} 93 ^{237,048} 94 ^{244,064} 95 ^{243,061} 96 ^{247,070} 97 ^{247,070} 98 ^{251,080} 99 ⁽²⁵⁴⁾ 100 ^{257,095} 101 ^{258,1} Mc Berkelium mmgd ² /2 ⁴¹ m ² m ² /2 ⁴¹ m ⁴ /2 ⁴¹ m	102 259.101 103 [262] Nobelium Lawrencium [Rn]5f1 ⁴ 5y ² [Rn]5f1 ⁴ 6d ¹ 7y ²

Spherical Symmetry

• Wavefunction for atomic orbitals

$$\psi(\vec{r}) = R(r) \Omega(\theta, \phi)$$
radial part angular part (spherical Harmonics)

• For the **d** shell:

 $\Omega(heta,\phi) = Y_l^m(heta,\phi)$ with l=2 m=-1m=-1

$$m = -2$$

d Orbitals

• Atomic orbitals are linear combinations of spherical harmonics

0

Crystal Field Splitting

Spherical Symmetry

... reduced to ...

Octahedral Symmetry

Atom SOC

** Omiting the ħ factor from *L*.

** Omiting the h factor from *L*.

L = 2 Angular Momentum

$$L_x = \begin{pmatrix} 0 & 0 & 0 & | -i\sqrt{3} & -i \\ 0 & 0 & +i & 0 & 0 \\ 0 & -i & 0 & 0 & 0 \\ \hline +i\sqrt{3} & 0 & 0 & 0 & 0 \\ +i & 0 & 0 & 0 & 0 \end{pmatrix} \qquad L_y = \begin{pmatrix} 0 & 0 & -i & | & 0 & 0 \\ 0 & 0 & 0 & | +i\sqrt{3} & -i \\ \hline +i & 0 & 0 & 0 & 0 \\ \hline 0 & -i\sqrt{3} & 0 & 0 & 0 \\ 0 & +i & 0 & | & 0 & 0 \end{pmatrix}$$

Orbital basis
$$L_{z} = \begin{pmatrix} 0 & +i & 0 & 0 & 0 \\ -i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & +2i \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2i & 0 & 0 \end{pmatrix} \xleftarrow{} \begin{array}{c} |d_{yz}\rangle \\ |d_{zx}\rangle \\ |d_{xy}\rangle \\ |d_{z^{2}}\rangle \\ |d_{x^{2}-y^{2}}\rangle \end{cases}$$

** Omiting the ħ factor from *L*.

When the t_{2g} and e_g energy levels are *sufficiently split* and the filling is d⁶ or less, we may only consider operators acting in the t_{2g} subspace and can project all operators into this subspace.

$$L_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & +i \\ 0 & -i & 0 \end{pmatrix} \quad L_y = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ +i & 0 & 0 \end{pmatrix} \quad L_z = \begin{pmatrix} 0 & +i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- Effective L = 1 angular momentum
- The components satisfy the *negative* of the usual commutation relations.

$$\vec{L} \times \vec{L} = -i\vec{L}$$

Spin-Orbit Coupling

• For t_{2g} orbitals, the effective L = 1 and S = 1/2 combine to total j = 1/2 and j = 3/2.

Spin-Orbit Assisted Mott Insulators

Similar...

Co, Rh, Ir: 5 valence electrons in the *d* shell

Sr₂XO₄ tetragonal BCC crystal structure

Yet....

 Sr_2CoO_4 (Mott Insulator) Sr_2RhO_4 (metal) Sr_2IrO_4 (insulator)

Scope of Lectures and Anchor Points:

- 1.Spin-Orbit Interaction
- atomic SOC
- band SOC: dresselhaus and rashba
- symmetries: time reversal, inversion, mirror
- 2.Berry Phase and Topological Invariant
- two level system
- graphene
- 3.Hall effects
- integer qhe and chern #

My philisophy.... choose simplicity and insight over completeness

<u>Toy Problems:</u>

<u>Day 1:</u>

- 1) 1d SOC: spin-momentum locking
- 2) Two level system (Spin ½ in a magnetic field) and Berry Phase
- 3) Graphene: dirac points protected by inversion and TR

<u>Day 2:</u>

- 4) 1d SSH [polyacetylene] model and topological invariant
- 5) Graphene continued:
- Break inversion: sublattice potential
- Break TR: Haldane mass

Bands SOC

Spin-orbit coupling in bands Example in 1d: spin-momentum locking

Bands SOC

Bands SOC

small Zeeman field along x Apply ٤ n=0 spin momentum locking 个 $p \rightarrow$ Gap opens up at the degenerate point. Traverse the BZ always remaining in the lowest band. (adiabatic evolution). -> The electron spin will twist from J for -p to ↑ for +p

Bands SOC

No Winding: hence topologically trivial

Scope of Lectures and Anchor Points:

- 1.Spin-Orbit Interaction
- atomic SOC
- band SOC: dresselhaus and rashba
- symmetries: time reversal, inversion, mirror
- 2.Berry Phase and Topological Invariant
- two level system
- graphene + mass terms
- 3.Hall effects
- integer qhe and chern #

- topological quantum matter
- quantum criticality at Dirac point

Electionic shucture
Carbon:
$$Z = 6$$
 $(S^2 2S^2 2P^2)$
He-core (ignore)
He-core (ignore)
 (S, P_Z, P_Y, P_Z) $(S^2 2P^2)$
 (S, P_Z, P_Y, P_Z) $(S^2 2P^2)$ $(S^2 2P^2)$
 (S, P_Z, P_Y, P_Z) $(S^2 2P^2)$ $(S^2 2P^2)$ $(S^2 2P^2)$
 (S, P_Z, P_Y, P_Z) $(S^2 2P^2)$ $(S^2 2P^2$

Bands at the chemical potential are derived from p_z orbitals

pz

Energy (eV)

Within unit cell:

W

atoms = 2
orbitals

$$(4\times2) = 8$$

electrons
 $(4\times2) = 8$
 $(2\times2) = 8$
 $(2\times2$

Graphene Material → Honeycomb

ā,

a2

$$\vec{a}_{1} = \left(\frac{3}{2}\hat{x} + \frac{13}{2}\hat{y}\right)a_{0} \qquad = a\hat{x} + b\hat{y}$$

$$\vec{a}_{2} = \left(\frac{3}{2}\hat{x} - \frac{13}{2}\hat{y}\right)a_{0} \qquad basis$$

$$\frac{1}{12}basis}{12}basis}$$

$$\frac{1}{12}basis}{12}basis}$$

$$\frac{1}{12}basis}{12}basis}$$

$$\frac{1}{12}a_{0} \qquad b=\frac{1}{12}a_{0}$$

$$\vec{R}_{nm} = n\vec{a}_{1} + m\vec{a}_{2} \qquad (n, m \in \mathbb{Z})$$

Momentum Space Structure $\vec{b}_1 = 2\pi \vec{a}_2 \times \vec{a}_2$ $\vec{a}_1 \cdot (\vec{a}_1 \times \vec{a}_3)$ $b_1 = \frac{\pi}{2}\hat{z} + \frac{\pi}{2}\hat{y}$ $\vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$ $= \frac{\pi}{2} \hat{x} - \frac{\pi}{2} \hat{y}$

For a 2D structure $\vec{a}_2 = a_3 \hat{z}$ $a_3 \gg a_0 \leftarrow c - c$ distance The magnitude of a_3 cancels in the evaluation of the b_i Definitions: $a = \frac{3}{2} a_0$ $b = \frac{\sqrt{3}}{2} a_0$

BRILLOUIN ZONE: UNIT CELL IN MOMENTUM SPACE Find region enclosed by bisectors of vectors to nearest neighbor points in reciprocal space

Tight-binding model with nearest neighbor hopping on a honeycomb lattice

 $\mathcal{H} = -t \sum_{\langle i_A, j_B \rangle} \left(c^{\dagger}_{i_A \sigma} c_{j_B \sigma} + \text{H.c.} \right)$ $\sigma = \uparrow, \downarrow$

 i_A , j_B are nearest-neighbor sites, respectively in sublattice A and B (colored red and blue) and σ is a spin index that we suppress

Here α is a sublattice index

Eigenenergies at momentum **k**

$$E_{\pm} = \pm \sqrt{3 + 2\cos\left(\sqrt{3}k_y a\right) + 4\cos\left(\frac{\sqrt{3}}{2}k_y a\right)\cos\left(\frac{3}{2}k_x a\right)}$$

Dirac nodes at $\mathbf{K}_{\pm} = \left(\pm \frac{4\pi}{3\sqrt{3}a}, 0\right)$

$$H_{\mathbf{k}} = \begin{pmatrix} 0 & h_{\mathbf{k}} \\ h_{\mathbf{k}}^* & 0 \end{pmatrix} = \mathbf{d}(\mathbf{k}) \cdot \boldsymbol{\tau}$$

Berry

My philisophy.... choose simplicity and insight over completeness

<u>Toy Problems:</u>

<u>Day 1:</u>

1) 1d SOC: spin-momentum locking

- 2) Two level system (Spin 1/2 in a magnetic field) and Berry Phase
- 3) Graphene: dirac points protected by inversion and TR

<u>Day 2:</u>

- 4) 1d SSH [polyacetylene] model and topological invariant
- 5) Graphene continued:
- Break inversion: sublattice potential
- Break TR: Haldane mass

01

$$\sigma_{z} | \pm \rangle = \pm | \pm \rangle$$

$$\sigma_{x} | \pm \rangle = | \mp \rangle$$

$$\sigma_{y} | \pm \rangle = \pm i | \mp \rangle$$

$$\theta = 0 \qquad \chi_{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \chi_{-} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$\theta = \pi/2, \phi = 0$$
 $\chi_+ = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$ $\chi_- = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$

Apply to graphene:

 $A = \uparrow$ $B = \downarrow$

Hamiltonian at momentum k can be written in terms of Pauli matrices in sublattice space

$$H_{\mathbf{k}} = \begin{pmatrix} 0 & h_{\mathbf{k}} \\ h_{\mathbf{k}}^{*} & 0 \end{pmatrix} = \mathbf{d}(\mathbf{k}) \cdot \boldsymbol{\tau} \qquad \begin{array}{c} \boldsymbol{\tau}_{i} \text{ for } i=1,2,3 \\ \vdots \text{ Pauli matrices} \\ \text{ in sublattice} \\ \text{ basis} \end{array}$$

Formally, **d**(**k**) in sublattice basis is analogous to "magnetic field" acting on spin

Berry

$$H_{\mathbf{k}} = \begin{pmatrix} 0 & h_{\mathbf{k}} \\ h_{\mathbf{k}}^* & 0 \end{pmatrix} = \mathbf{d}(\mathbf{k}) \cdot \boldsymbol{\tau}$$

$$d_{x}(\mathbf{k}) = -t \sum_{j=1}^{3} \cos\left(\mathbf{k} \cdot \boldsymbol{\delta}_{j}\right)$$
$$d_{y}(\mathbf{k}) = -t \sum_{j=1}^{3} \sin\left(\mathbf{k} \cdot \boldsymbol{\delta}_{j}\right)$$
$$d_{z}(\mathbf{k}) = 0$$

$$\begin{split} \lambda_1 &= + |\vec{d}| & \chi_+ = \begin{pmatrix} \cos \theta/2 \\ \sin \theta/2 & \vec{e} \end{pmatrix} \\ \lambda_2 &= - |\vec{d}| & \chi_- = \begin{pmatrix} \sin \theta/2 & \vec{e}^{i\phi} \\ -\cos \theta/2 \end{pmatrix} \end{split}$$

2 atoms in unit cell My philisophy.... choose simplicity and insight over completeness

<u>Toy Problems:</u>

<u>Day 1:</u>

- 1) 1d SOC: spin-momentum locking
- 2) Two level system (Spin ½ in a magnetic field) and Berry Phase

3) Graphene: dirac points protected by inversion and TR

<u>Day 2:</u>

- 4) 1d SSH [polyacetylene] model and topological invariant
- 5) Graphene continued:
- Break inversion: sublattice potential
- Break TR: Haldane mass

Dirac points protected by TR and inversion symmetry

- → With *both* inversion and time-reversal symmetry, $d_z(\mathbf{k}) = 0$ → Zeros of $\mathbf{d}(\mathbf{k})$ exist (Dirac points)
- \rightarrow Zeros of **d**(**k**) exist (Dirac points)

Proof: TR and I protect Dirac points

The "Full" tight binding Hamiltonian can be expanded around each "valley"

- Dirac nodes at $\mathbf{K}_{\pm} = \left(\pm \frac{4\pi}{3\sqrt{3}a}, 0\right)$ Keep only low energy states
- Expand H_k near K_+ and K_-

$$h_{\mathbf{k}} = -t \sum_{j} e^{i\mathbf{k}\cdot\boldsymbol{\delta}_{j}}$$

$$\mathcal{H} \approx \sum_{\mathbf{q}} \left(c_{\mathbf{K}_{+}+\mathbf{q},A}^{\dagger}, c_{\mathbf{K}_{+}+\mathbf{q},B}^{\dagger}, c_{\mathbf{K}_{-}+\mathbf{q},A}^{\dagger}, c_{\mathbf{K}_{-}+\mathbf{q},B}^{\dagger} \right) \begin{pmatrix} 0 & h_{\mathbf{K}_{+}+\mathbf{q}} & 0 & 0 \\ h_{\mathbf{K}_{+}+\mathbf{q}}^{*} & 0 & 0 & 0 \\ 0 & 0 & 0 & h_{\mathbf{K}_{-}+\mathbf{q}} \\ 0 & 0 & 0 & h_{\mathbf{K}_{-}+\mathbf{q}} \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{-}+\mathbf{q},B} \\ c_{\mathbf{K}_{-}+\mathbf{q},B} \end{pmatrix}$$

Two independent "valleys" with Dirac cones

$$\mathcal{H} \approx \frac{3}{2} t a \sum_{\mathbf{q}} \left(c_{\mathbf{K}_{+}+\mathbf{q},A}^{\dagger}, c_{\mathbf{K}_{+}+\mathbf{q},B}^{\dagger} \right) \begin{pmatrix} 0 & q_{x} - i q_{y} \\ q_{x} + i q_{y} & 0 \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \end{pmatrix} \\ + \left(c_{\mathbf{K}_{-}+\mathbf{q},A}^{\dagger}, c_{\mathbf{K}_{-}+\mathbf{q},B}^{\dagger} \right) \begin{pmatrix} 0 & -q_{x} - i q_{y} \\ -q_{x} + i q_{y} & 0 \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{-}+\mathbf{q},A} \\ c_{\mathbf{K}_{-}+\mathbf{q},B} \end{pmatrix}$$

Each block can be written in terms of Pauli matrices in sublattice basis

$$h_{K_{+}+q} = \frac{3}{2} ta(q_x \tau_x + q_y \tau_y) = \vec{d}_+(\vec{q}).\vec{\tau}$$
$$h_{K_{-}+q} = \frac{3}{2} ta(-q_x \tau_x + q_y \tau_y) = \vec{d}_-(\vec{q}).\vec{\tau}$$

Include valley index

$$H_q = \hbar v_F (q_x \chi_z \tau_x - q_y \tau_y)$$

τ_i for *i*=1,2,3

0 !

 $\epsilon_k^{0.0}$

-0.5

: Pauli matrices in sublattice basis

$$\chi_i$$
 for *i*=1,2,3
: Pauli matrices in valley basis

By expanding the honeycomb band structure around the points
$$\overline{R}_{+}$$
 and \overline{R}_{-} we get the following two Dirac Ham.

$$\frac{\text{Around }\vec{k}_{+}}{h(\vec{k}_{+}+\vec{q})} = q_{x}\tau_{x} + q_{y}\tau_{y} - (1) = \begin{pmatrix} 0 & q_{x} - iq_{y} \\ q_{x} + iq_{y} & 0 \end{pmatrix}$$

$$\frac{\text{Around }\vec{k}_{-}}{k_{-}} = \vec{k}_{+} + \vec{q} \\
\vec{k}_{-} = -\vec{k}_{+} \\
h(\vec{k}_{-}+\vec{q}) = h(-\vec{k}_{+}+\vec{q}) - q_{x}\tau_{x} + q_{y}\tau_{y} = \begin{pmatrix} 0 & -q_{x} - iq_{y} \\ -q_{x} + iq_{y} & 0 \end{pmatrix}$$

$$(2)$$

What kind of term can we add to
$$h(\vec{R})$$

so that it opens a gap in the spectrum
but preserves TR symmetry.

$$\frac{Cousider:}{h(\vec{K}_{+} + \vec{q})} = g_{z}T_{z} + g_{y}T_{y} + m\sigma_{z}$$

$$[h(\vec{K}_{+} + \vec{q})]^{*} = g_{x}T_{z} - g_{y}T_{y} + m\sigma_{z}$$

$$[h(\vec{K}_{+} + \vec{q})]^{*} = g_{x}T_{z} - g_{y}T_{y} + m\sigma_{z}$$

$$[h(\vec{K}_{+} + \vec{q})] = g_{x}T_{z} - g_{y}T_{y} + m\sigma_{z}$$

$$[h(\vec{K}_{+} + \vec{q})] = g_{x}T_{z} - g_{y}T_{y} + m\sigma_{z}$$

$$[h(\vec{K}_{+} + \vec{q})] = g_{x}T_{z} - g_{y}T_{y} + m\sigma_{z}$$

$$[h(\vec{K}_{+} + \vec{q})] = g_{x}T_{z} - g_{y}T_{y} + m\sigma_{z}$$

$$[h(\vec{K}_{+} + \vec{q})] = g_{x}T_{z} - g_{y}T_{y} + m\sigma_{z}$$

$$[h(\vec{K}_{+} + \vec{q})] = g_{x}T_{z} - g_{y}T_{y} + m\sigma_{z}$$

Dirac points are protected when both TR and Inv are present

Under TR

$$h(\vec{k}) = [h(-\vec{k})]^* - (1)$$
Under I

$$h(\vec{k}) = \tau_{\chi} h(-\vec{k}) \tau_{\chi} (2)$$

When both I and T are present

$$\begin{bmatrix} h(-k) \end{bmatrix}^{*} = T_{x} h(-k) T_{x}$$

$$\begin{bmatrix} h(k) = T_{x} h^{*}(k) T_{x} \end{bmatrix}$$
Now consider a generic 2-level Hamiltonian

$$H = \vec{d}(k) \cdot \vec{z} + \vec{e}(k) T_{0}$$

$$T & I \Rightarrow$$

$$d_{i} T_{i} + \vec{e} = T_{x} (d_{i} T_{i} + \vec{e}) T_{x}$$

$$= \begin{bmatrix} d_{x} T_{x} T_{x} T_{x} + d_{y} T_{x} T_{y} T_{x} \\ + d_{z} T_{x} T_{z} T_{x} + \vec{e} T_{x} \end{bmatrix}$$
Pauli matrices

$$T_{x} = \begin{bmatrix} d_{x} T_{x} T_{x} T_{x} + d_{y} T_{y} T_{y} \\ + d_{z} T_{x} T_{z} T_{x} + \vec{e} T_{x} \end{bmatrix}$$

$$= \begin{pmatrix} d_{x} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{x} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

$$= \begin{pmatrix} d_{z} T_{x} + d_{y} T_{y} - d_{z} T_{z} + \vec{e} \end{bmatrix}$$

=>

N

Granhana

$$H = \sum_{q} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A}^{+} & c_{\mathbf{K}_{+}+\mathbf{q},B}^{+} & c_{\mathbf{K}_{-}+\mathbf{q},A}^{+} & c_{\mathbf{K}_{-}+\mathbf{q},B}^{+} \end{pmatrix} \begin{pmatrix} 0 & h_{q} & 0 & 0 \\ h_{q}^{*} & 0 & 0 & 0 \\ 0 & 0 & 0 & h_{q}^{*} \\ 0 & 0 & h_{q} & 0 \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{-}+\mathbf{q},A} \\ c_{\mathbf{K}_{-}+\mathbf{q},B} \end{pmatrix}$$
Graphene where $h_{\mathbf{q}} = \frac{3ta}{2} \left(-q_{x} + i \ q_{y} \right)$

(Color: Berry curvature = Berry flux density)

Introduce Dirac mass by breaking symmetry

To introduce "mass" to the Dirac cones, need to break either <u>inversion</u> or time-reversal symmetry

Potential energy difference between sublattices

$$\mathcal{H}_{AB} = m_{AB} \left(\sum_{i_A} c^{\dagger}_{i_A} c_{i_A} - \sum_{i_B} c^{\dagger}_{i_B} c_{i_B} \right)$$

breaks inversion (and C_6 rotation, etc.). This introduces uniform $d_7(\mathbf{k})$.

 $d_z(\mathbf{k}) = m_{AB}$

raphene

$$H = \sum_{q} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A}^{+} & c_{\mathbf{K}_{+}+\mathbf{q},B}^{+} & c_{\mathbf{K}_{-}+\mathbf{q},A}^{+} & c_{\mathbf{K}_{-}+\mathbf{q},B}^{+} \end{pmatrix} \begin{pmatrix} 0 & h_{q} & 0 & 0 \\ h_{q}^{*} & 0 & 0 & 0 \\ 0 & 0 & 0 & h_{q}^{*} \\ 0 & 0 & h_{q} & 0 \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{-}+\mathbf{q},B} \\ c_{\mathbf{K}_{-}+\mathbf{q},B} \end{pmatrix}$$
where $h_{\mathbf{q}} = \frac{3ta}{2} \left(-q_{x} + i q_{y} \right)$

G

Introduce Dirac mass by breaking symmetry

To introduce "mass" to the Dirac cones,

need to break either inversion or time-reversal symmetry

Next nearest neighbor hopping with imaginary amplitude

$$\mathcal{H}_H = i\lambda_H \sum_{\langle\langle i,j \rangle\rangle} c_i^{\dagger} c_j^{\dagger} + \text{H.c.}$$

breaks time-reversal symmetry. This introduces valley dependent $d_z(\mathbf{k})$.

 $\epsilon_k^{0,0}$

Ky.

 $d_z(\mathbf{k}) = m_H \varepsilon_z \tau_z$ $m_H = 3\sqrt{3}\lambda_H$

$$H = \sum_{q} \left(c_{\mathbf{K}_{+}+\mathbf{q},A}^{+} \ c_{\mathbf{K}_{+}+\mathbf{q},B}^{+} \ c_{\mathbf{K}_{-}+\mathbf{q},A}^{+} \ c_{\mathbf{K}_{-}+\mathbf{q},B}^{+} \right) \begin{pmatrix} 0 & h_{q} & 0 & 0 \\ h_{q}^{*} & 0 & 0 & 0 \\ 0 & 0 & h_{q} & 0 \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{-}+\mathbf{q},B} \end{pmatrix} \qquad \text{Graphene}$$

$$where h_{\mathbf{q}} = \frac{3ta}{2} \left(-q_{x} + i \ q_{y} \right)$$

$$H = \sum_{q} \left(c_{\mathbf{K}_{+}+\mathbf{q},A}^{+} \ c_{\mathbf{K}_{+}+\mathbf{q},B}^{+} \ c_{\mathbf{K}_{-}+\mathbf{q},A}^{+} \ c_{\mathbf{K}_{-}+\mathbf{q},B}^{+} \right) \begin{pmatrix} m_{AB} & h_{q} & 0 & 0 \\ h_{q}^{*} & -m_{AB} & 0 & 0 \\ 0 & 0 & m_{AB} & h_{q}^{*} \\ 0 & 0 & h_{q} & -m_{AB} \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{-}+\mathbf{q},B} \end{pmatrix} \qquad \text{Inversion Breaking}$$

$$H = \sum_{q} \left(c_{\mathbf{K}_{+}+\mathbf{q},A} \ c_{\mathbf{K}_{+}+\mathbf{q},B} \ c_{\mathbf{K}_{-}+\mathbf{q},A} \ c_{\mathbf{K}_{-}+\mathbf{q},B} \\ (h_{q}^{*} & -m_{H} & 0 & 0 \\ h_{q}^{*} & -m_{H} & 0 & 0 \\ 0 & 0 & -m_{H} \ h_{q}^{*} \\ 0 & 0 \ h_{q} \ m_{H} \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \end{pmatrix} \qquad \text{Inversion Breaking}$$

where
$$m_H = \frac{3\sqrt{3}}{2}\lambda_H$$

With Haldane mass

$$H = \sum_{q} (c_{\mathbf{K}_{+}+\mathbf{q},A}^{+} c_{\mathbf{K}_{+}+\mathbf{q},B}^{+} c_{\mathbf{K}_{-}+\mathbf{q},A}^{+} c_{\mathbf{K}_{-}+\mathbf{q},B}^{+}) \begin{pmatrix} m_{H} & h_{q} & 0 & 0 \\ h_{q}^{+} & -m_{H} & 0 & 0 \\ 0 & 0 & -m_{H} & h_{q}^{+} \\ 0 & 0 & h_{q} & m_{H} \end{pmatrix} \begin{pmatrix} c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{\mathbf{K}_{+}+\mathbf{q},B} \\ c_{\mathbf{K}_{+}+\mathbf{q},A} \\ c_{$$

