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Abstract

This project aims to develop DFT modeling techniques for use in STM analy-
sis. By simulating Ir(111) and Fe/Ir(111)—for which experimental data already exist
in-lab—an analysis of the effectiveness of current techniques in DFT is performed.
The techniques are capable of modeling the basic behavior of Ir(111). They accu-
rately reproduce surface relaxation spacing and topography, while producing a some-
what accurate LDOS. Band structure calculations also appear normal. Fe/Ir(111) cal-
culations also appear promising in the aforementioned areas, with the exception of
the LDOS for which no viable experimental data exist for comparison. Overall, this
project has aided the development of proficient DFT modeling in the group’s arsenal
of analytic tools.

1 Introduction

1.1 Motivations
It has long been known that surfaces of

materials ought to display unique properties dif-
ferent than those of the bulk.1 This fact has led
to continued interest in the development and
utility of nanomaterials whose properties are
dominated by surface effects. More recently, the
discovery and characterization of graphene has
greatly heightened interest in the field.2 These
nanomaterials can exhibit exceptional proper-
ties.3,4,5 Some are so special that they have
been given their own names: topological insu-
lators6,7,8 and skyrmion lattices9 to name a few.

Experimentally identifying and probing
these surfaces is of great importance for future
research but can only extensively be done by
a handful of techniques such as angle-resolved
photo emission spectroscopy (ARPES) or scan-
ning tunneling microscopy (STM).10 In the case
of STM, it can often be difficult to interpret
observed data due to the wide variety of con-
tributing factors at play. Thus, having accu-
rate theoretical models of specific systems under
study can be quite advantageous for establishing
confident analysis.11 This project aims to imple-
ment density functional theory (DFT), one such
theoretical method, for the purpose of modeling
STM data.

1.2 The Many-Body Problem

1.2.1 Formulation

In order to accurately model atomically peri-
odic systems, the many-body Schrödinger equa-
tion must be solved.

ih̄
∂
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2me

∑
i

∇2
i −

∑
i,I

ZIe
2

| ri −RI |

+
1

2

∑
i 6=j

e2

| ri − rj |
−
∑
i

h̄2

2MI

∇2
I

+
1

2

∑
I 6=J

ZIZJe
2
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Electrons and nuclei are denoted by lower and
upper case indicies and radii respectively.10,12

1.2.2 Difficulties

Many-body problems in physics are noto-
riously challenging. Even the classical three-
body problem has no general closed form solu-
tion,13 let alone the quantum N-body problem.
In fact, naively looking for solutions to eq. 1.2.1
involves finding eigenvectors in a space that
scales exponentially with N.12 This makes such
a problem effectively impossible for large N sys-
tems even given modern computing power.
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1.2.3 Approaches

Many clever approximations must be made
to arrive at solutions that are a reasonable com-
promise between accuracy and computing cost.
(Note: while some of the approximations dis-
cussed below are unique to DFT, many apply to
N-body problems at large). These approxima-
tions include:

• The Born Oppenheimer Approxima-
tion: Due to the fact that MI � me in
(1.2.1), the atomic nuclei can be assumed
to be stationary. This makes the final
two terms in eq. 1.2.1 constant (the 4th

being zero and the 5th being non-zero) and
removable via a shift in the total energy of
the system. Thus, the Hamiltonian can be
reformatted as12

Ĥ = T̂kin + V̂nuc + V̂ee (2)

• Quantization of Continuous Variables
and Termination of Infinite Sets: Under
a good set of basis functions, integrals
and sums involved in solving the N-body
problem ought to converge to the cor-
rect answer within a reasonable number
of terms. This allows for finer integra-
tion meshes and higher index terms to be
neglected safely.

• Periodic Boundary Conditions: Since
the systems of interest to STM are
almost always crystalline and fairly large
(N ≈ 1023), it becomes convenient to
assume that the material is constructed via
infinitely repeating unit cells. This behav-
ior is modeled by assuming that once the
end of a unit cell is reached it loops back.
Mathematically, this means that

Ψ(r + ai) = Ψ(r) (3)

where r is a vector in the unit cell and ai

is one of the vectors defining the size of
the unit cell. Further discussion can be
found in 1.3.1.

• Ψ → n: Instead of searching for the
eigenfunctions of various energy levels,
it’s easier to look for the electron den-
sity of the ground state (n), which turns
out to be a viable quantity for computing
nearly all other relevant parameters of a
system.10 In fact, this is where DFT gets
its name from as the system’s parameters
become functionals of the electron den-
sity.14

1.3 Crystal Structure

1.3.1 Lattices

Fundamentally, the structure of a material
(and its atomic species) determines what its
properties are. Thus, it is essential that it is mod-
eled correctly. Luckily, one of the hallmarks of
materials—esp. those under study by STM—is
their periodicity. As such, it is possible to rep-
resent their structure using what is called a unit
cell. A unit cell is defined as a minimal build-
ing block such that tessellating it reproduces the
complete structure of the material.

a b

Figure 1: (a) A depiction of Ir, which has a face-
centered cubic (FCC) unit cell. (b) A depiction
of LaAlO3, which can be represented by a trigo-
nal unit cell.

Mathematically, an n-dimensional lattice
can be represented by n lattice vectors
{a1, ..., an} and what is known as a basis. The
lattice vectors define the boundaries of the unit
cell such that translation by any linear combi-
nation of them with integer coefficients brings
one back to the same relative point in the unit
cell. The basis is a set of vectors {v1, ...,vn}
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that defines the positions of the atoms within the
unit cell.

A common family of crystals are cubic lat-
tices. The most densely packed member of this
family is the face-centered cubic (FCC) lattice
(Figure 1a), which is constructed by placing
atoms on the center of each face and corner of
the cube. In terms of lattice vectors and a basis,
the FCC lattice can be represented by

a1 = ax̂, a2 = aŷ, a3 = aẑ

v1 = 0, v2 =
1

2
a1 +

1

2
a2,

v3 =
1

2
a1 +

1

2
a3, v4 =

1

2
a2 +

1

2
a3 (4)

where a is a lattice constant dependent on the
material. Many transition metals like Ir have
this structure. Beyond cubic lattices, there are
more non-trivial constructions like the trigonal
unit cell depicted in Figure 1b.15,16

Figure 2: A depiction of a FCC Wigner-Seitz
cell.17

It is worth noting that a particular unit cell
representation is not necessarily unique. Often-
times it is possible to represent a crystal using an
entirely different scheme. For instance, FCC lat-
tices can be represented using a trigonal scheme
as well.10 More fundamentally, it is possible to
construct a unit cell that occupies a minimal pos-
sible volume known as a primitive cell. One
popular type of primitive cell is the Wigner-
Seitz cell, which is constructed by the area con-
tained within orthogonal planes that bisect the
vectors between nearest neighbor atoms (Figure
2).

Of particular relevance to experimental
setups is the orientation of a crystal. For
instance, in B20 crystal structures it’s relevant
whether or not the crystal is upside down or
not.18 As such, it is conventional to denote a
crystal’s orientation using what are know as
Miller indices. These indices define a vector
(composed of the lattice constants in each direc-
tion) which in turn defines a plane that is perpen-
dicular to the vector (see Figure 3). The analysis
of this report focuses on Ir cut along the [111]
plane (Ir(111)) corresponding to the crystal for
which experimental STM data have been taken.

a b

Figure 3: (a) A [010] Miller plane superimposed
on a FCC unit cell. (b) A [111] Miller plane
superimposed on a FCC unit cell.

1.3.2 Surfaces

A uniquely important component of model-
ing nanomaterials is accurately representing sur-
faces and how films interface with the substrate
they are grown on. This requires constructing a
unit cell that is much larger/taller than usual, a
supercell, with a significant portion being empty
(Figure 4a). Since periodic boundary conditions
are still in effect, this supercell construction is
registered in the computer as a system of infinite
slabs of material separated by enough vacuum to
decouple inter-slab interactions. A further wrin-
kle to the supercell construction is that the ori-
entation and cut of the crystal become relevant
variables that must be accounted for. In the case
of a FCC(111) crystal, a trigonal supercell was
used to accurately model the [111] surface while
allowing for adequate vacuum space by adjust-
ing the height. An isolated slab of Ir(111) using
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this supercell can be seen in Figure 4c. Another
key structural property of surfaces is that their
inter-atomic spacing almost always changes due
to the lack of atoms above the surface. This pro-
cess is known as relaxation and can be fairly
nontrivial.10,19

a b

c

Figure 4: (a) An Ir(111) supercell.20 (b) A
depiction of how a real-space supercell (red)
changes in reciprocal space (blue). (c) Ir(111)
slab.20

1.3.3 Reciprocal Space

In order to understand the electronic struc-
ture of a material, it is often convenient to con-
sider how electrons are distributed in energy-
momentum space. It is conventional, however,
to consider the electrons’ wavevector k as a
proxy of it’s momentum. Keeping in mind that
k has units of 1

space
it becomes possible to repre-

sent electrons’ momentum in reciprocal space.
In fact, the entire lattice structure can be

inverted into reciprocal space with its own set of

reciprocal lattice vectors {b1, ...,bn}. In three
dimensions, these vectors are

b1 =
2π

V
(a2 × a3), b2 =

2π

V
(a3 × a1),

b3 =
2π

V
(a1 × a2) (5)

where V is the volume of the unit cell in real
space.

Within reciprocal space, it is customary to
represent the possible k values within a Wigner-
Seitz cell with the center being the origin (Fig-
ure 5a). This cell is often referred to as the 1st

Brillouin zone (BZ). Depictions of the 1st BZ for
FCC and trigonal lattices can be seen in Figures
5b,d. Also labeled are high symmetry points
which define what is known as the irreducible
Brillouin zone (IBZ). The IBZ is the smallest
possible cut of k space that can still represent
the whole BZ via physical and lattice symme-
tries (time reversal, mirror, etc.).21,22,23

When dealing with surfaces it is also neces-
sary to observe the k-space of a supercell. In
this case, the height of the 1st BZ becomes very
compressed (Figure 4b). For a simple trigonal
or tetragonal supercell of height hreal = αa, its
reciprocal height becomes hrecip = 2π

αa
, giving a

scaling that goes like

hreal
hrecip

∝ α2 (6)

Since α ∼ 10 for most relevant calculations,
hreal
hrecip

∼ 100. Thus the surface supercell BZ can
be thought of as a flat projection of the bulk BZ
(Figure 5c).

Due to the fact that electrons are fermions,
they cannot occupy the same quantum state and
end up spread out in k-space. The surface of
the shape representing the electrons’ momenta is
known as the Fermi surface (Figure 6). Depend-
ing on the number of electrons, it can extend into
the 2nd, 3rd, etc. BZ. The electrons on this sur-
face represent the most energetic occupied states
in the material. The energy that these electrons
have is called the Fermi energy and it plays a
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crucial role in determining the basic fundamen-
tal properties of a material.

a b

c d

Figure 5: (a) A depiction of how the 1st Brillouin
zone (BZ) is constructed.24 (b) The 1st BZ of a
FCC lattice.25 (c) A depiction of the projected
[111] surface 1st BZ of a FCC lattice.26 (d) The
1st BZ of a Trigonal lattice.25

a b c

Figure 6: Fermi surfaces of: (a) Potassium. (b)
Lithium. (c) Copper.16

For any given momentum there are numer-
ous continuous bands it can occupy (Figure 7).
If bands go through the Fermi energy, the mate-
rial is a metal. If not, it is either a semiconduc-
tor or an insulator depending on how wide of
a gap exists between the lowest-energy unoccu-
pied band and the highest-energy valance band.
Accurately representing these bands becomes
increasingly challenging as a system’s dimen-
sionality increases since they exist in n + 1
dimensions (n for k and one for E). In three
dimensions, it is customary to represent the
bands as the E-k plots produced by following a
set of linear paths in k-space between high sym-
metry points.

a

Figure 7: Semiconductor (Ge) band structure
and corresponding DOS.27

Figure 8: An example of the surface states in
Cu(111), depicted as the lone bands outside the
shaded bulk projected band structure.28

When comparing bulk band structures to
those of a surface, its is customary to project the
bulk band structure onto the virtually flat super-
cell BZ. This is done by taking a high symme-
try path that is perpendicular to the surface vec-
tor and plotting the band structures for all pos-
sible values of k⊥. This is known as the bulk
projected band structure (BPBS). Computation-
ally this is done by looking at a set of k⊥ val-
ues {0, .., k⊥max} with relatively small spacing.
Plots of the BPBS and surface bands can be used
to identify surface states. Surface bands that lie
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outside the bulk bands are such states (Figure
8).10,26

2 Methods

2.1 STM

2.1.1 Introduction

Scanning tunneling microscopy was first
developed by Binning and Rohrer in 1982 as a
method to probe the surface structure of materi-
als.29 At a basic level, it uses tunneling currents
through a biased vacuum to probe the electronic
structure of a material (see Figure 9).

Figure 9: A pictoral representation of tip-sample
electron tunneling29

In order to achieve this feat, STM is typ-
ically performed in ultra-high vacuum (UHV)
environments often at very low temperatures
(∼5 K). Using piezoelectric stacks on a vibra-
tion insulated stage, a metal tip is brought mere
angstroms away from the surface under investi-
gation to establish a tunneling current. This cur-
rent is roughly exponentially dependent on ∆z
making it quite useful for probing very small
height changes like those of atoms on the sur-
face of a material.

2.1.2 Scanning Modes

While STM has a number of versatile appli-
cations this report focuses on the two most com-
monly used: constant current mode and spec-
troscopy mode

• Constant Current: Under this mode,
a preselected current is locked onto and
maintained via a feedback loop with the
z-direction piezos. The tip is then system-
atically moved over the surface while the
relative changes in z are recorded. This
results in a topographic map of the elec-
tronic states of the system according to the
equation

∆z(x, y) = −∆I(x, y)

dI(z)/dz
. (7)

It is worth noting that this image can vary
significantly depending on the voltage the
sample is biased at as some atomic species
may only appear at certain biases29,30

(Figure 10).

• Spectroscopy: Scanning tunneling spec-
troscopy (STS) mode measures dI

dV
(V ) at

a localized point on the surface. These
data happen to be directly correlated to
energy-projected band structure at a given
point—also known as the local density of
states (LDOS).

dI

dV
(V ) ∝ nsurface(EFermi + eV ) (8)

Thus, the band structure of a material
can be locally probed, offering significant
insight into the electronic structure of the
surface.

Figure 10: The famous (7x7) reconstruction of
Si(111). The dependence on bias can clearly be
seen.31
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2.2 DFT

2.2.1 Basic Theory

As discussed previously, DFT is a way
of modeling materials via approximating the
ground state electron density. In 1965, Kohn
and Sham devised a scheme (the modern equiva-
lent of which is seen in Figure 11) wherein non-
interacting electron wavefunctions (correspond-
ing to VHar) coupled with a reasonable scheme
for modeling the electron exchange correlation
energy (corresponding to Vxc) could be used to
iteratively converge on a ground-state electron
density n(r).

QE begins parallel execution.

Vnuc constructed from structure.

Initial n(r) guessed.

VHar[n(r)] and Vxc[n(r)] calcu-

lated, fully defining Veff (r) =

Vnuc(r) + VHar(r) + Vxc(r).

Solve ĤΨi(r) = [− 1
2
∇2 +

V̂eff (r)]Ψi(r) = εiΨi(r)

Find nnew(r) =
∑

i | Ψi(r) |2

Is nnew(r) consistent

with nold(r)?

n(r) calculation complete.

Generate new

n(r) via mixing.

yes

no

Figure 11: A depiction of how the Kohn-Sham
equations are solved.10

2.2.2 Implementation

It took many more decades for DFT algo-
rithms to become as versatile as they are now.
Some of the characteristic parameters in DFT
for one to be aware of are:

• Pseudopotentials: Modeling all elec-
trons in a system is quite computation-
ally taxing. Instead, DFT calculations
use pseudopotentials, which are modi-
fied atomic potentials that only include
valence electrons under the influence of
a charge-screened core. Additionally, the
core portion of wavefunctions is often
modified to be smoother such that it takes
fewer higher energy terms in a given basis
to model (Figure 12).32

Figure 12: A comparison between pseu-
dopotentials (red) and real potentials
(blue).

• Energy Cutoff: Wavefunctions are
approximated using some basis. In order
to save computing power, only the first
few dozen basis functions under a speci-
fied energy cutoff are used. This almost
always works well since higher order
terms are outside the energy scope of
the problem. This approximation is fur-
ther aided by the use of pseudopoten-
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tials which smooth out higher frequency
modes of Ψ near the nucleus.

• k-Space Mesh: Many computations
involve integrating over k-space. Instead,
it is convenient to sample k-space at a
given set of points.

• n Mixing: Oftentimes the electron den-
sity will converge more quickly if the
input into the next iteration is a superposi-
tion of various previous states.

• Smearing: Due to sharp Fermi surface
behavior in metals it is usually necessary
to use some kind of smearing scheme to
prevent issues in computation.

2.2.3 Calculation Details

Calculations were performed at the Ohio
Supercomputing Center (OSC)33 (see Figure
14) using the open-source DFT package Quan-
tum Espresso (QE).34,35 Pseudopotentials were
taken from pslibrary1.0.0.36 Using QE, both
Ir(111) and Fe/Ir(111) were simulated. The
Ir(111) slab was modeled using an 8 atom thick
supercell, and the Fe was included by adding
an additional layer onto the 8 atom thick slab
(Figure 13). The numer of layers was chosen
as a compromise between other calcualtions in
literature that used more atoms and the compu-
tational cost of doing so.37 Ir(111) was mod-
eled both with and without spin orbit coupling
(SOC) whereas Fe/Ir(111) was modeled without
any spin-ordering.

a b

Figure 13: (a) Ir(111) slab. (b) Fe/Ir(111) slab.

OSC Reads Job Script.

Temp. directory entered.

Input file constructed from script.

Program executed using input file.

Relevent output and data files

retreived.

Script execution completed. Temp.

directory flushed.

Figure 14: A depiction of the overall algorithm
submitted to the supercomputer.

3 Results

3.1 Surface Relaxation

a

b c

Figure 15: (a) Structural relaxation data. (b)
Visual representations of the interlayer spacings.
(c) Experimental data for Ir(111) (processed in
WSxM38). The data seem to match what is pre-
dicted.
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a

b

Figure 16: (a) Bulk projected band structure vs.
slab supercell band structure of Ir(111) without
SOC. (b) Bulk projected band structure vs. slab
supercell band structure of Ir(111) with SOC.

Figure 17: Bulk projected band structure of
Ir(111) vs. slab supercell band structure of
Fe/Ir(111).

Relaxation calculations for Ir(111) show

(Figure 15) that the inter-layer spacing grows
from its value of 2.2136 Å in the bulk39 to
2.2033 Å or 2.2073 Å—depending on whether
or not SOC is accounted for—at the surface.
These results correspond well with experimental
measurements as well as predictions from liter-
ature.37 Calculations for Fe/Ir(111) indicate the
Fe layer is closer to the Ir substrate that the spac-
ing between Ir layers (1.9589 Å) and that the Fe
layer seems to pull on the top Ir layer enough to
increase its spacing by ∼ 0.1 Å. These results
correspond well with the literature40 and make
further sense when the inter-atomic spacing for
Fe is noted to be less than that of Ir.41

3.2 Band Structure

3.2.1 Ir(111)

Supercell band structure calculations follow
the M −K −Γ−M path depicted in Figure 4d
and are drawn in red. Bulk projected band struc-
tures follow the M −K − Γ−M path depicted
in Figure 4c and are drawn in gray. In order to
represent bulk behavior, 20 linearly spaced val-
ues of k⊥ from 0 to k⊥max were used (see Figure
16).

Multiple surface states were observed at K
in both plots, with another clear surface state
seen between Γ and M . The introduction of
SOC appears to spread the bands apart slightly
as can be seen at Γ as expected. Moreover, mul-
tiple bands cross at the Fermi level, suggesting
metallic behavior as expected for Ir which is a
transition metal.

3.2.2 Fe/Ir(111)

The Fe/Ir(111) bands follow the same path
as those of Ir(111) with the same number of k⊥
values taken into account for bulk bands (see
Figure 17).

Surface states are also observed, and while
most are quite similar in nature to those of bare
Ir(111), there is a new surface state observed
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at K just below the Fermi level. Additionally,
metallic behavior is observed as expected.

3.3 LDOS

3.3.1 Ir(111)

a

b

c

Figure 18: (a) Simulated LDOS of Ir(111) with-
out SOC. (b) Simulated LDOS of Ir(111) with
SOC. (c) Experimentally observed LDOS of
Ir(111).

As can be seen in Figure 18, the LDOS seem
to match qualitatively, reproducing the ridge
behavior observed in experiment. This ridge
behavior observed at around ∼ 1.2 eV in the-
ory is due to the bunching of local extrema in
the band structures. There appears to be a ∼ 1.5

eV mismatch between where this ridge behav-
ior occurs in experiment. This is likely due to
a variety of factors including intrinsic uncer-
tainty in the Fermi level in DFT calculations,
STM’s tendency preferentially sample near Γ,
and the dependence of experimental LDOS data
on the STM’s tip. SOC appears to have a mini-
mal effect. However, the spreading out of bands
can be observed as a small dip in the simulated
LDOS near E = 0 eV.

3.3.2 Fe/Ir(111)

a

Figure 19: Simulated LDOS of Fe/Ir(111).

Similar ridge behavior is observed for
Fe/Ir(111) (Figure 19). Additionally, there is
slight slouching that occurs at lower biases that
is different from Ir(111). While no viable exper-
imental data were collected to compare the sim-
ulated data to, the qualitative observations pro-
duced in Figure 19 could be used to differentiate
Fe layers from Ir layers. This task can be quite
difficult due to the pseudomorphic growth of the
Fe ML onto Ir(111).

3.4 STM Images
As can be seen in Figure 20a, the topogra-

phy for Ir(111) seems to match quite well. In
the case of Fe/Ir(111) (Figure 20), the topogra-
phy matches more poorly. This could be due to
the fact that the image was taken from the liter-
ature11 and may be distorted. It’s also possibly
indicative of strain in the Fe ML. This could be
expected since Fe prefers a smaller lattice that
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than of the Ir that it is pseudomorphically grown
on.
a b

Figure 20: (a) STM image of Ir(111) at 0.2 V
with a simulated STM image inset. (b) STM
image of Fe/Ir(111) at 0.005 V11 with a simu-
lated STM image inset.

4 Conclusion
So far, the DFT simulations that have been

run are able to model the basic properties of
Ir(111) and Fe/Ir(111). The only exception is
that the LDOS for Ir(111) appears to by off by
∼ 1.5 eV. Nonetheless, these preliminary results
hold great promise for aiding in future experi-
mental STM investigations.

5 Future Research
Further investigation is warranted in the fol-

lowing areas:

• Finishing the basic analysis of Ir(111)
and Fe/Ir(111): This involves investigat-
ing the effects of thicker slabs with more
vacuum, the strain in the Fe layer, bet-
ter rectifying the LDOS discrepancy, and
analyzing the surface states found in the
band structure calculations.

• Include spin ordering: Modeling the
effects of spin interactions on the band
structure by including spin-orbit coupling
(SOC) effects as well as ferromagnetic
ordering in Fe is a good starting point. A

deeper exploration could include a con-
sideration of more nontrivial magnetic
ordering.42

• Model new materials: Once the methods
developed here are able to be confidently
implemented, they will be of great use in
modeling future systems so that experi-
mental analysis can be assisted in real-
time.
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Navarro, Julio Gómez-Herrero, and Félix
Zamora. 2d materials: to graphene and
beyond. Nanoscale, 3(1):20–30, 2011.

[6] Xiao-Liang Qi and Shou-Cheng Zhang.
Topological insulators and superconduc-
tors. Reviews of Modern Physics,
83(4):1057–1110, October 2011.

[7] Haijun Zhang and Shou-Cheng Zhang.
Topological insulators from the perspec-
tive of first-principles calculations. phys-
ica status solidi (RRL) – Rapid Research
Letters, 7(1-2):72–81.

[8] Judy J. Cha, Kristie J. Koski, and
Yi Cui. Topological insulator nanostruc-
tures. physica status solidi (RRL) – Rapid
Research Letters, 7(1-2):15–25.
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