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ABSTRACT 
 
Biologists have recently began to consider the use of florescent nanodiamonds as candidates for 
conventional florescent biomarkers and in optical biolabeling. This is made possible by 
florescent defects in the crystal structure of the diamond, such as the nitrogen-vacancy (NV) 
center. The NV center is a color center, emitting bright red light upon excitation (with a green 
laser). In such applications as biolabeling, it is (useful/helpful/valuable) to be able to quantify the 
number of NV centers contained within a sample of nanodiamonds. Unfortunately, an accurate 
method of determining NV density in diamond is not yet available. We introduce a new potential 
method for quantifying NV density in a nanodiamond sample using magnetic resonance, in 
which the sample is placed inside a resonance cavity.  
 
 

I. INTRODUCTION 
 

I. Problems with Florescence-Related NV Density Measurements  
 

Most diamond contains a certain natural concentration of NV centers. Previous work has 
taken advantage of spin-dependent luminescence to measure the density of NV centers in a 
nanodiamond sample. Unfortunately, it has been found that these optical measurements do not 
provide accurate results. One source of error involves the presentation of photoluminescence that 
is unrelated to diamond. For example, graphite shells and amorphous carbon may be present on 
the surface of the nanodiamonds, and each impurity may have its own fluorescence. In some 
cases, this surface fluorescence can be significantly greater than that of the color centers in the 
interior (1). Although precautions are taken in an attempt to process signals corresponding to the 
proper wavelength for NV emission, it is nearly impossible to filter out every signal arising from 
other defects and background noise. 

 
II. Nitrogen Vacancy Centers 

 
The nitrogen vacancy center is among the most common defects in diamond, consisting of a 
nitrogen substitution adjacent to a crystal lattice vacancy (1). Six electrons contribute to the 
electronic structure of the NV– center: two from the nitrogen atom, one from each of the three 
carbon bonds surrounding the vacancy, and one which is captured from the lattice (1), resulting 
in the overall negative charge state. A visualization of the defect structure is shown in Figure 1.  



The NV center is a spin triplet system (𝑆𝑆 = 1). In the absence of an external magnetic field, the 
𝑚𝑚𝑠𝑠 = ± 1 spin-states are degenerate, with the  𝑚𝑚𝑠𝑠 = 0 state naturally lower in energy. The 
energy difference between the 𝑚𝑚𝑠𝑠 = 0 and 𝑚𝑚𝑠𝑠 = ± 1 states is called the zero-field splitting, 
given as 𝐷𝐷 = 2.87 GHz (Figure 2). With application of an external magnetic field 𝐵𝐵0, the 
degeneracy between the 𝑚𝑚𝑠𝑠 = ± 1 states is lifted, and the energies of the two spin-states split 

relative to 2.87GHz, with the 𝑚𝑚𝑠𝑠 = + 1 state being higher in energy than the 𝑚𝑚𝑠𝑠 = − 1 state. 
The states are then separated in energy by ∆𝐸𝐸 = 2ℏ𝛾𝛾𝐵𝐵0 (Figure 3), where 𝛾𝛾 is the electron 
gyromagnetic ratio. 

The NV center is a color center, exhibiting photoluminescence which can be identified 
optically by its emission and absorption spectra (1). This defect is unique among other color 
centers in it that it is magnetic, and furthermore that the florescence is coupled to the spin state 
(1). This allows for modulation of the luminescence intensity by magnetic fields, a property 
which can be exploited to monitor external magnetic and electric fields with great sensitivity and 
nanoscale resolution (1). This property of NV centers is of particular interest, as it lends itself to 
several exciting applications in physics and biology.  

Alternatively to utilizing spin-fluorescence coupling to determine NV center density, one 
can perform magnetic resonance measurements on nanodiamond samples by coupling NV spins 
to microwaves inside a resonance cavity. The most basic experiment involves the use of a cavity 
with a strong resonance frequency equal to the zero-field splitting of the NV center. Microwaves 
are directed into the cavity at a steady frequency matching the zero-field splitting, and a magnet 
is used to sweep an external magnetic field over the resonance. Microwave absorption by the 
sample occurs when the applied microwave frequency matches the frequency of spin transitions, 
which are tuned into resonance using an applied magnetic field, 𝐵𝐵0. The resulting EPR spectrum 
shows peaks with amplitudes corresponding to the microwave absorption intensity, and the 
integrated intensity is proportional to the concentration of NV centers in the sample.  
 

II. Microwave Cavities 
 

In its simplest form, a microwave cavity is a metal box with rectangular or cylindrical shape that 
confines electromagnetic radiation and uses resonance to amplify weak signals emitted from the 
sample placed inside. A microwave field is supplied to the cavity, and a frequency sweep is 
performed over the resonance. When this frequency matches a resonance frequency for the 

Nitrogen vacancy center in a 
crystal lattice. Ref. (7). 

Figure 1  

Zero-field splitting of spin states in NV– 
at 2.87GHz.  

Figure 2  
Zeeman splitting of NV– 𝑚𝑚𝑠𝑠 =  ±1 spin 
states due to application of external magnetic 
field. 

Figure 3  



cavity, standing waves are formed as a consequence. This implies that the electric and magnetic 
microwave (H1) fields are entirely out of phase when the resonance condition is met, i.e. the 
antinode of one field corresponds to the node of the other. This is an important aspect of the 
resonance cavity; in a magnetic resonance experiment, optimal sample placement occurs within a 
magnetic field maximum, or equivalently, at an electric field minimum. It is possible to 
determine the approximate locations of these H1 maxima by examining the cavity modes. This 
aspect will be discussed in more depth in §1.3 and §4.4. 

The design of a resonance cavity is driven by the desire to create a mechanism which will 
amplify weak signals coming from a sample which are already emitted under resonance. There 
are several ways to characterize how effective a resonance cavity is in doing this. The quality 
factor (Q-factor) of a cavity is a measure of how efficiently the cavity stores microwave energy. 
A lower Q-factor implies that greater amounts of energy are being lost, and vice versa.  

There are many ways that energy may be lost in a cavity. Commonly, energy is lost to the 
side walls of a cavity due to induced electrical currents in the metal which in turn generate heat 
(2). This energy loss can be minimized by using a highly conducting material for the cavity 
walls, such as copper, but some loss is inevitable as there are no truly perfect conductors. 
Another frequent way that energy is dissipated involves the coupling between the cavity and 
wave-carrier, where the two components may be over- or under-coupled. This will be discussed 
in more detail later in this section. 

Assuming no energy is lost to additional external factors, the Q-factor depends on the 
cavity material, dimensions, and the particular mode which is being exited in the cavity at a 
given frequency. The theoretical Q-factor for a cavity of length d, height a, and width b with a 
corresponding mode of indices l, m, n is then given by the equation 
 

𝑄𝑄 =
𝑎𝑎 𝑏𝑏 𝑑𝑑 𝑘𝑘𝑟𝑟3 𝑘𝑘𝑥𝑥𝑥𝑥2  𝑍𝑍0

4𝑅𝑅𝑠𝑠 �𝑎𝑎 𝑏𝑏 𝑘𝑘𝑥𝑥𝑥𝑥2  𝑘𝑘𝑧𝑧2 + 𝑏𝑏 𝑑𝑑� 𝑘𝑘𝑥𝑥𝑥𝑥2 +  𝑘𝑘𝑥𝑥2 𝑘𝑘𝑧𝑧2� � � 1 2⁄
 1   𝑙𝑙 = 0

else  � + 𝑎𝑎 𝑑𝑑 � 𝑘𝑘𝑥𝑥𝑥𝑥4 + 𝑘𝑘𝑥𝑥2 𝑘𝑘𝑧𝑧2 � � � 1 2⁄
 1   𝑚𝑚 = 0

else  �� 
  , 

 
 
 
where 𝑘𝑘𝑟𝑟 is the wavenumber 
 

�𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑧𝑧2  , 

 
and 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧 are components of the wavevector 𝑘𝑘, given by 
 

   (i)    𝑘𝑘𝑥𝑥 = 𝑚𝑚 𝑎𝑎⁄   
  (ii)   𝑘𝑘𝑥𝑥 = 𝑛𝑛 𝑏𝑏⁄   
(iii)  𝑘𝑘𝑧𝑧 = 𝑙𝑙 𝑑𝑑⁄  

 
 
 
with 𝑘𝑘𝑥𝑥𝑥𝑥 = �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑥𝑥2 . 

(1.2.1) 

 

(1.2.2) 

(1.2.3) 



The vacuum impedance, 𝑍𝑍0, is defined as the ratio 𝑍𝑍0 = |𝑬𝑬|
|𝑯𝑯| and relates the magnitudes of the 

electric and magnetic fields of an electromagnetic wave propagating through a vacuum. It is a 
physical constant, approximately equal to 120𝜋𝜋 Ω. 

To measure the Q-factor for a cavity at a particular frequency,  a more useful definition is 
given by 
 

𝑄𝑄 =
𝜈𝜈𝑟𝑟𝑟𝑟𝑠𝑠
∆𝜐𝜐

, 

 
where 𝜐𝜐𝑟𝑟𝑟𝑟𝑠𝑠 is the resonance frequency and ∆𝜈𝜈 is the full width at half maximum (FWHM) for 
that frequency (Figure 4) (2). 
 
 

 
 
Another important aspect in the cavity design is the filling factor. The filling factor of a cavity, in 
essence, describes to what degree the sample fills the cavity. In an EPR measurement, it is the 
external magnetic field 𝐵𝐵0 which drives absorption, ultimately creating the signal. More 
precisely, the filling factor indicates the degree to which the sample fills the region of the cavity 
in which 𝐵𝐵0 is strong (3). If the applied magnetic field were uniform throughout the cavity, the 
filling factor would simply be the ratio of the sample volume to the resonator volume (3), but as 
this is not the case, the filling factor is rather given by 
 

𝜂𝜂 =
∫ 𝐵𝐵02𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑙𝑙𝑟𝑟

∫ 𝐵𝐵02𝑑𝑑𝑑𝑑𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥
 . 

 
Therefore, it is favorable that the sample be commensurate in size with regions of strong 
magnetic field within the cavity. 

An additional factor of importance is in the coupling between the cavity and the mechanism 
used to transfer microwaves into the cavity. This depends on the particular mechanism. A 
waveguide is a typical method of coupling microwaves into a resonance cavity, involving a 
hollow, conductive, metal tube which carries microwaves from the source to the resonator. 
Another option is a coaxial cable, which requires the use of an antenna to couple between the 
cable and cavity. Coupling between a microwave cavity and coaxial cable will be explored in 
more depth in §5.2. For either method, the degree of coupling depends largely on sufficient 
impedance matching between the cavity and wave-carrier. The coupling coefficient is defined as 

 

𝛽𝛽 =
𝑅𝑅0𝑛𝑛2

𝑟𝑟
 , 

(1.2.4) 

(1.2.5) 

Reflected microwave power from a resonance cavity, 
showing the resonance frequency 𝜐𝜐𝑟𝑟𝑟𝑟𝑠𝑠 and FWHM, ∆𝜐𝜐.  
Ref. 2.  

Figure 4 

(1.2.6) 



where 𝑅𝑅0 is the impedance of the microwave source, 𝑛𝑛 is the turns ratio for the transformer, and 
𝑟𝑟 is the impedance of the cavity (8). For a cavity which is critically coupled, or “matched,” 𝛽𝛽 =
0. In this case, there is maximum power transfer from the microwave source to the cavity, and no 
waves are reflected from the cavity (8). This results is maximum EPR sensitivity. For 𝛽𝛽 < 1, the 
cavity is said to be undercoupled, resulting in reflection of microwaves from the cavity and a 
higher Q-factor than a matched cavity. The last case is for 𝛽𝛽 > 1, in which the cavity is 
overcoupled. This also results in the reflection of microwaves from the cavity, but with a lower 
Q-factor than for a matched cavity (8). 
 

III. Transverse Electric Modes (5) 
 
This section outlines the derivation leading to the solutions for transverse electric modes 
propagating in a rectangular cavity.  

For monochromatic waves propagating in the cavity, E and B have the generic form 
 

(i)    𝑬𝑬(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑬𝑬0(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑒𝑒−𝑐𝑐𝑖𝑖𝑐𝑐 
 

(ii)    𝑩𝑩(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑩𝑩0(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑒𝑒−𝑐𝑐𝑖𝑖𝑐𝑐 
 
Assuming that the cavity is a perfect conductor, it must be that 𝑬𝑬 = 𝟎𝟎 and 𝑩𝑩 = 𝟎𝟎 inside the 
material itself. Therefore, the above equations are constrained by the boundary conditions  
 

(i)    𝑬𝑬∥ = 𝟎𝟎 
 

(ii)   𝐵𝐵⊥ = 0 
 
 
at all surfaces. The electric and magnetic fields must satisfy Maxwell’s equations within the 
cavity: 
 

(i)  𝛁𝛁 ∙ 𝑬𝑬 = 0 (iii)  𝛁𝛁 ×  𝑬𝑬 =  −
𝜕𝜕𝐵𝐵
𝜕𝜕𝑡𝑡

(ii)  𝛁𝛁 ∙ 𝑩𝑩 = 0 (iv)  𝛁𝛁 ×  𝑩𝑩 =
1
𝑐𝑐2

 
𝜕𝜕𝐸𝐸
𝜕𝜕𝑡𝑡

 

 
 
The problem is then to find functions 𝑬𝑬0 and 𝑩𝑩0 such that the fields (3.1) satisfy the differential 
equations (3.3), constrained by the boundary conditions (3.2). 
 As confined waves are generally not transverse, one must include longitudinal 
components (𝐸𝐸𝑧𝑧 and 𝐵𝐵𝑧𝑧) in order to satisfy the boundary conditions: 
 

𝑬𝑬0 = 𝐸𝐸𝑥𝑥𝑥𝑥� + 𝐸𝐸𝑥𝑥𝑦𝑦� + 𝐸𝐸𝑧𝑧�̂�𝑧 
𝑩𝑩0 = 𝐵𝐵𝑥𝑥𝑥𝑥� + 𝐵𝐵𝑥𝑥𝑦𝑦� + 𝐵𝐵𝑧𝑧�̂�𝑧 

 
where each of the components is a function of y and z. Putting (3.4) into Maxwell’s equations 
(iii) and (iv), we obtain: 

(1.3.1) 

(1.3.2) 

(1.3.3) 

(1.3.4) 



 

(i)     
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑦𝑦

= 𝑖𝑖𝑖𝑖𝐵𝐵𝑧𝑧 (iv)    
𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝑦𝑦

= −
𝑖𝑖𝑖𝑖
𝑐𝑐2
𝐸𝐸𝑧𝑧

(ii)    
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑦𝑦

− 𝑖𝑖𝑖𝑖𝐸𝐸𝑥𝑥 = 𝑖𝑖𝑖𝑖𝐵𝐵𝑥𝑥 (v)     
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑦𝑦

− 𝑖𝑖𝑖𝑖𝐵𝐵𝑥𝑥 = −
𝑖𝑖𝑖𝑖
𝑐𝑐2
𝐸𝐸𝑥𝑥

(iii)    𝑖𝑖𝑖𝑖𝐸𝐸𝑥𝑥 −
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑥𝑥

= 𝑖𝑖𝑖𝑖𝐵𝐵𝑥𝑥 (vi)     𝑖𝑖𝑖𝑖𝐵𝐵𝑥𝑥 −
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑥𝑥

= −
𝑖𝑖𝑖𝑖
𝑐𝑐2
𝐸𝐸𝑥𝑥

 

 
Equations (ii), (iii), (v), and (vi) can be solved for 𝐸𝐸𝑥𝑥,𝐸𝐸𝑥𝑥,𝐵𝐵𝑥𝑥, and 𝐵𝐵𝑥𝑥: 
 

(i)    𝐸𝐸𝑥𝑥 =
𝑖𝑖

(𝑖𝑖 𝑐𝑐⁄ )2 − 𝑖𝑖2
�𝑖𝑖
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑥𝑥 

+ 𝑖𝑖
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑦𝑦

� 

 

(ii)    𝐸𝐸𝑥𝑥 =
𝑖𝑖

(𝑖𝑖 𝑐𝑐⁄ )2 − 𝑖𝑖2
�𝑖𝑖
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑦𝑦 

− 𝑖𝑖
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑥𝑥

� 

 

(iii)    𝐵𝐵𝑥𝑥 =
𝑖𝑖

(𝑖𝑖 𝑐𝑐⁄ )2 − 𝑖𝑖2
�𝑖𝑖
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑥𝑥 

−
𝑖𝑖
𝑐𝑐2
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑦𝑦

� 

 

(iv)    𝐵𝐵𝑥𝑥 =
𝑖𝑖

(𝑖𝑖 𝑐𝑐⁄ )2 − 𝑖𝑖2
�𝑖𝑖
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑦𝑦 

+
𝑖𝑖
𝑐𝑐2
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑥𝑥

� 

 
 
Then it is adequate to determine the longitudinal components 𝐸𝐸𝑥𝑥 and 𝐵𝐵𝑥𝑥. When these are known, 
we can easily find all other components using (3.6). Inserting (3.6) into the remaining Maxwell 
equations gives uncoupled equations for 𝐸𝐸𝑧𝑧 and 𝐵𝐵𝑧𝑧: 
 

(i)   �
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ (𝑖𝑖 𝑐𝑐⁄ )2 − 𝑖𝑖2� 𝐸𝐸𝑧𝑧 = 0 

(ii)   �
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ (𝑖𝑖 𝑐𝑐⁄ )2 − 𝑖𝑖2� 𝐵𝐵𝑧𝑧 = 0 

 
 
 If 𝐸𝐸𝑥𝑥 = 0 we call these transverse electric (TE) waves, and if 𝐵𝐵𝑥𝑥 = 0 we call them 
transverse magnetic (TM) waves. If both 𝐸𝐸𝑥𝑥 = 0 and 𝐵𝐵𝑥𝑥 = 0, we call them transverse 
electromagnetic (TEM) waves. 

For a cavity of rectangular shape (Figure 5) with height a, width b, and length d where 
we are interested in the propagation of TE waves, we must solve Eq. 3.7ii, subject to the 
boundary condition 3.2ii. This can be accomplished using separation of variables. Let 
 
 

𝐵𝐵𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑋𝑋(𝑥𝑥)𝑌𝑌(𝑦𝑦)𝑍𝑍(𝑥𝑥), 
 
such that  

(1.3.5) 

 
(1.3.6) 

 (1.3.7) 

(1.3.8) 



 

𝑌𝑌𝑍𝑍
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2

+ 𝑍𝑍𝑋𝑋
𝑑𝑑2𝑌𝑌
𝑑𝑑𝑦𝑦2

+ 𝑋𝑋𝑌𝑌
𝑑𝑑2𝑍𝑍
𝑑𝑑𝑍𝑍2

+ [(𝑖𝑖 𝑐𝑐⁄ )2 − 𝑘𝑘2]𝑋𝑋𝑌𝑌𝑍𝑍 = 0 

 
Divide by XYZ, and take notice that the x-, y-, and z-dependent terms must be constants: 
 

(i)    
1
𝑋𝑋
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2

= −𝑘𝑘𝑥𝑥2 

(ii)    
1
𝑌𝑌
𝑑𝑑2𝑌𝑌
𝑑𝑑𝑦𝑦2

= −𝑘𝑘𝑥𝑥2 

(iii)    
1
𝑍𝑍
𝑑𝑑2𝑍𝑍
𝑑𝑑𝑧𝑧2

= −𝑘𝑘𝑧𝑧2 
 
with  
 

−𝑘𝑘𝑥𝑥2 − 𝑘𝑘𝑥𝑥2 − 𝑘𝑘𝑧𝑧2 + (𝑖𝑖 𝑐𝑐⁄ )2 − 𝑘𝑘2 = 0. 
 
The general solution to Eq. 3.10i is given by 
 

𝑋𝑋(𝑥𝑥) = 𝐴𝐴 𝑠𝑠𝑖𝑖𝑛𝑛(𝑘𝑘𝑥𝑥𝑥𝑥) + 𝐵𝐵 𝑐𝑐𝑐𝑐𝑠𝑠(𝑘𝑘𝑥𝑥𝑥𝑥). 
 
 
However, the boundary conditions require that 𝐵𝐵𝑥𝑥—and hence also (Eq. 3.6iii) 𝑑𝑑𝑋𝑋 𝑑𝑑𝑥𝑥⁄  –goes to 
zero at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝑎𝑎. Then it must be the case that 𝐴𝐴 = 0 and  
 

𝑘𝑘𝑥𝑥 = 𝑚𝑚𝜋𝜋 𝑎𝑎⁄ ,          (𝑚𝑚 = 0, 1, 2 … ). 
 
Similarly for 𝑌𝑌 and 𝑍𝑍,  
 
 

𝑘𝑘𝑥𝑥 = 𝑛𝑛𝜋𝜋 𝑏𝑏⁄ ,          (𝑛𝑛 = 0, 1, 2 … ), 
 

𝑘𝑘𝑧𝑧 = 𝑙𝑙𝜋𝜋 𝑑𝑑⁄ ,          (𝑙𝑙 = 0, 1, 2 … ). 
 
Thus, we conclude that 
 

𝐵𝐵𝑧𝑧 = 𝐵𝐵0 cos (𝑙𝑙𝜋𝜋𝑧𝑧 𝑑𝑑)cos (𝑚𝑚𝜋𝜋𝑥𝑥 𝑎𝑎)cos (𝑛𝑛𝜋𝜋𝑦𝑦 𝑏𝑏).⁄⁄⁄  
 
For electromagnetic waves confined to the interior of a cavity of length d, width b, and height a 
(Figure 5), solutions to the above equation are called  TE𝑙𝑙𝑠𝑠𝑙𝑙 modes, where the indices l ,m, n are 
integers indicating the quantization of the electric field in the corresponding dimension. The first 
index is conventionally associated with the larger dimension, so we assume that 𝑑𝑑 ≥ 𝑎𝑎 ≥ 𝑏𝑏.  For 
a transverse electric (𝑇𝑇𝐸𝐸𝑙𝑙𝑠𝑠𝑙𝑙) mode, the cutoff frequency is  
 

𝑖𝑖𝑙𝑙𝑠𝑠𝑙𝑙 = 𝑐𝑐𝜋𝜋�(𝑙𝑙 𝑑𝑑⁄ )2 + (𝑚𝑚 𝑏𝑏⁄ )2 + (𝑛𝑛 𝑏𝑏⁄ )2 .  

 

(1.3.9) 

(1.3.10) 

(1.3.11) 

(1.3.12) 

(1.3.13) 

(3.14) 

(3.15) 

(3.16) 



 
This is the lowest frequency at which the mode will propagate. The TE modes which propagate 
in a cavity therefore depend upon the applied microwave frequency and the cavity dimensions.  
Figure 6 shows a visualization of a TE101 mode as an electric field density plot.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. MATERIALS AND METHODS 
 
 

I. Designing a Microwave Cavity: Powder Patterns 
 
In order to perform resonance measurements on a nanodiamond sample, it was first necessary to 
design and machine a new microwave cavity. A variety of commercial cavities are available, but 
they are typically tuned to frequencies upwards of 9.0 GHz. While the resonance condition can 
still be met at this frequency, a problem arises in the quality of the EPR signals. A nanodiamond 
sample may contain a number of NV centers, for which there are four possible orientations that 
may be adopted by each defect for 𝑚𝑚𝑠𝑠 = ±1. For a single nanodiamond, this results in clear EPR 
signals with eight distinct peaks (Figure 7). In this case, the eigenstates of the Hamiltonian are 
the eigenbasis and are hence diagonal, resulting in the linear dispersions seen in Figure 3 for 
𝑚𝑚𝑠𝑠 =  ±1. The basic Hamiltonian is given as 
 

𝐻𝐻 = 𝐷𝐷𝑆𝑆𝑧𝑧2 + 𝛾𝛾𝑩𝑩0 ∙ 𝑺𝑺, 
 
where 𝑩𝑩0 is the applied magnetic field, 𝑺𝑺 is the spin-1 operator, and D is the zero-field splitting.  
Diagonalization of the Hamiltonian yields the eigenstates, which are sensitive to the direction of 
the applied magnetic field and thus depend upon the angle 𝜑𝜑 between 𝐵𝐵0 and the NV axis (6). In 
many-NV samples, the result of many possible orientations is the manifestation of so-called 
powder patterns. In this case, the eigenstates are no longer the eigenbasis and are not diagonal, 
and thus produce curved dispersions, as shown in Figure 8.  

Visualization of TE101 mode in a rectangular cavity 
showing density plot of microwave electric field   

Figure 6 

a 

d 
b 

Microwave cavity concept with length d, width b, and height a.   

Figure 5  

x 

y z 
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II. Designing a Microwave Cavity: Physical Considerations 

 
Three factors primarily drove the design of the microwave cavity: frequency, modes, and 
physical constraints. As discussed in §1.2, the formation of standing waves in the cavity is a 
consequence of resonance, and optimal sample placement for magnetic resonance measurements 
occurs within a magnetic field maximum and electric field minimum. It is convenient for this 
magnetic field antinode to occur at the center of the cavity for ease of sample placement and 
optimization of the filling factor. It is then desirable to excite a mode which provides a magnetic 
field maximum at the cavity center, and which propagates at a frequency very near the zero-field 
splitting of the NV center (𝐷𝐷 = 2.87 GHz).  

Additional considerations in the cavity dimension lie in physical constraints from the 
electromagnet. As the magnetic field sweep is provided by an external magnet, it is required that 
the cavity fit within the bounds of that magnet. The physical constraints from this magnet 
(Figure 9) determine that it is necessary to have the height, 𝑎𝑎 < 6 cm and the width,   
𝑏𝑏 < 2 cm, with no constraints on the cavity length. The mode which best fits these requirements 
is 𝑇𝑇𝐸𝐸210  (Figure 10), for which the electric field is quantized twice along the length of the 
cavity, once along the height of the cavity, and is constant in the cavity width. The double 
quantization of the electric field along the cavity length implies an electric field node exactly at 
the center of the cavity. Because the electric field is constant in the y-dimension—along the 
cavity width— the mode frequency is independent of this dimension. Therefore, the width can be 
made as small as necessary. Conversely, because the cavity length is not restricted by the 
magnet, this dimension can be as large as necessary. Because there are no constraints on the 
cavity length, values were chosen for the cavity width, and using the desired frequency and 

Splitting of 𝑚𝑚𝑠𝑠 = ± 1 spin state energies following application of 
magnetic field sweep, including powder patterns (blue) resulting 
from many NV orientations (0° < 𝜑𝜑 < 90°) in the sample. 

Figure 8 

Result of powder dispersions in EPR spectrum with 
varying applied magnetic field intensities (b). Ref (6). 

Figure 7 



mode, the appropriate cavity length could be determined. For a rectangular cavity of length d, 
height a, and width b, with mode TE210, the (linear) frequency is given by 
 

𝑓𝑓 =
𝑐𝑐
2
�(𝑙𝑙 𝑑𝑑⁄ )2 + (𝑚𝑚 𝑏𝑏⁄ )2 + (𝑛𝑛 𝑏𝑏⁄ )2  

 
This equation can be rearranged to describe the cavity height as a function of the length, as  
𝑛𝑛 = 0 for TE102. 

𝑎𝑎(𝑑𝑑) = ��
2𝑓𝑓
𝑐𝑐
�
2

− �
2
𝑑𝑑
�
2

�
−12

 

  
Plotting this function (Figure 11), reasonable dimensions can be chosen for the cavity height a 
and length d. For cavity dimensions 𝑑𝑑 = 21.2 cm, 𝑏𝑏 = 2.0 cm,𝑎𝑎 = 6.0 cm, the frequency of the 
𝑇𝑇𝐸𝐸210 mode is 2.87 GHz.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Visualization of TE210 mode showing density plot of the electric 
field. The changing direction of the E-field is shown by two 
example vectors (black), a consequence of standing wave 
formation via resonance. 

Figure 10  

Electromagnet which will hold the microwave cavity and 
provide a magnetic field sweep. The white wire makes up the 
magnet modulation coils. 

Figure 9 

(4.1) 



 
 

III. Model Cavity 
 
A model cavity (Figure 12) was used preliminarily in an attempt to investigate cavity modes and 
coupling with a coaxial cable before deciding on a final design for the microwave cavity. This 
model cavity was a rectangular, metal box constructed from an unknown, magnetic material. The 
dimensions consisted of length 𝑑𝑑 = 19.8 cm, height 𝑎𝑎 = 5.5 cm, and width 𝑏𝑏 = 11 cm, making 
the model cavity similar to the proposed cavity design in the length and height dimensions.  
The box was fitted with an SMA connector, to which a copper wire was soldered for use as an 
antenna (Figure 14). The purpose of the antenna is to couple the cavity with the coaxial cable 
transmitting the microwaves. It was decided that the antenna should be loop-shaped over a 
vertical or stud antenna, as magnetic coupling was desired; a stud antenna drives the electric field 
rather the magnetic field. This is not the case for the loop shape, and it is a simple task to 
determine how it should be oriented within the cavity to couple with the desired mode, knowing 
that the magnetic field produced by the current flowing through the wire should be as in Figure 
X. To couple to the TE210 mode, the loop should be oriented in the XZ-plane. 

The model cavity was connected to a VNA network analyzer, and a frequency sweep  
(0-27GHz) was performed. A sample peak from the resulting frequency spectrum is shown in 
Figure 13. This peak represents a weak resonance frequency at 2.055GHz. In order to quickly 
assess the resonance frequencies which appeared in the spectrum, a Java program was developed 
which calculates all possible TE modes for a given frequency and dimensions. The program also 
returns the cutoff frequency and theoretical Q-factor for each mode. Figure 15 shows a sample 
of the program interface. 

Height of resonance cavity as a function of the cavity length (m), following the 

relationship 𝑎𝑎(𝑑𝑑) = ��2𝑓𝑓
𝑐𝑐
�
2
− �2

𝑑𝑑
�
2
�
−12

. The “x” indicates the chosen solution for the 
cavity length and height. 

Figure 11  
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(Section) of frequency spectrum produced by VNA. A weak 
resonance at 2.055 GHz is shown. 

Figure 13 
A view of the model cavity showing coordinate system and 
connection to a coaxial cable as the microwave transmission 
line. 

Figure 12  

Program interface for Java mode calculator. 

Figure 15 

H1 field generated by loop current couples with MW magnetic fields inside the cavity. 
 

Figure 14  



 
 

IV. Probing and Visualizing Transverse Electric Modes  
 
 
To investigate the orientation of the electric and magnetic fields involved in a cavity mode, a 
simple probing method described by Richard Feynman in The Feynman Lectures (Vol. II, Ch. 
23) was utilized. A small wire is inserted into the cavity through a hole along one of the cavity 
faces. If the alignment of the wire is parallel to the electric field, a current is induced in the wire, 
causing the resonance to disappear from view in the VNA spectrum. The reason for suppression 
of the resonance can be easily understood by examining Equation 1.2.4 for the Q-factor:  

 
𝑄𝑄 =

𝜈𝜈𝑟𝑟𝑟𝑟𝑠𝑠
∆𝜐𝜐

  
 

As the resonance disappears, it is so that the Q-factor for the resonance rapidly decreases. 
As a current is induced in the wire, energy is sapped from the cavity and therefore the efficiency 
of microwave storage is decreased. For a constant resonance frequency 𝜈𝜈𝑟𝑟𝑟𝑟𝑠𝑠 and a decreasing 𝑄𝑄, 
it must be that ∆𝜐𝜐 is increasing proportionally. This is the FWHM of the resonance, and so the 
effect is that of stretching the resonance peak horizontally until it can no longer be distinguished 
from the background. This probing method allows one a simple way to confirm the modes 
predicted by the Java program in §4.3. 

It is convenient to be able to visualize the cavity modes, for both probing and to aid in the 
determination of optimal sample placement. For this purpose, a Mathematica program was 
created which allows the user to visualize any valid1 TE mode for given cavity dimensions. The 
program returns the cutoff frequency for the mode as well as 3-dimensional density plots of the 
electric and magnetic fields involved in the mode. Figure 16 shows a sample of the program 
interface. 

Several holes were placed along the lid of the model cavity to investigate the modes 
using this probing method. At 2.055 GHz, the expected mode for the cavity dimensions is again, 
TE210 (Figure 17). For this cavity, the length is greater than the width, and both are greater than 
the height. Therefore, the first index corresponds to the cavity length, the second index 
corresponds to the cavity width, and the third index corresponds to the cavity height. The mode 
indices then indicate that the electric field is quantized twice along the cavity length, once along 
the cavity width, and not at all along the cavity height. This suggests that the electric field is 
constant along the cavity height. Therefore, it is expected that inserting a wire vertically through 
a hole in the top of the cavity should significantly disturb the resonance where there is an electric 
field antinode. This effect is shown in Figure 18. Conversely, no change in the resonance is 
expected when the wire is inserted into a hole which corresponds to an electric field node—such 
as in the center and left and right edges—for the TE210 mode. When the wire is bent at a right 
angle and inserted into the cavity lid above an electric field antinode, no change is seen in the 
resonance. This is because the wire is now perpendicular to the electric field, and so no current is 
induced in the wire and no energy is lost in this way.  

 
                                                      
1 A transverse electric mode may have no more than a single zero-index, and indices must be integers between 0 
and 9, inclusive.  



 

 
 
 
 
 
  

Interface of Mathematica program for visualizing TE modes in rectangular cavities using density plots of the electric and 
magnetic fields. Red regions correspond to high density areas, whereas blue regions correspond to low density areas. 
Pictured is the TE222 mode.  

Figure 16  

Visualization of TE210 mode using electric field density plot (left) and magnetic field density plot (right). Red regions 
correspond to high density areas, whereas blue regions correspond to low density areas. 
 

Figure 17  
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V. Final Cavity Design 
 
The dimensions for the final cavity were set at length 𝑑𝑑 = 21.2 cm, width 𝑏𝑏 = 2.0 cm, 
and height 𝑎𝑎 = 6.0 cm. For the cavity material, a highly conducting metal is desired. 
Ultimately, the chosen material was aluminum, which has fair conductivity and is much lower in 

Original design of the microwave cavity. 

Figure 19  

x 

Adjustable wall 

Tuning screw 

VNA network analyzer spectrum before and after probing the electric field of the TE210 mode with a 
copper wire inserted vertically into the cavity lid. This orientation of the wire is parallel with the electric 
field, which is transverse to the propagation direction. As a current is induced in the wire, energy is 
dissipated from the system, and the quality factor for the resonance is destroyed.  

Figure 18  



cost than copper. This was a practical decision in the case that the resonance cavity did not 
function as desired. The cavity design (Figure 19) included an adjustable wall, such that the 
length of the cavity could be altered. This allowed for tuning of the cavity’s resonance 
frequencies. Once the cavity was machined, probe holes were placed along the cavity lid.  
 

V. RESULTS AND DISCUSSION 
 

I. Model Microwave Cavity 
 
Using the Java program and VNA data, each resonance for the model cavity could be matched 
with its corresponding modes. Data was collected for two loop orientations, vertical (XZ-plane), 
and horizontal (YZ-plane). For the loop oriented vertically (Figure 20), Table 1 shows the 
observed resonance frequencies for the range 0-5 GHz. A sample of the frequency spectrum for 
this orientation is shown in (Figure 21). 

 
  

Spectrum generated by frequency sweep from VNA network analyzer, 
showing resonances from 0-7 GHz.   

Figure 21 
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Vertical orientation of loop antenna in the model 
cavity. The direction of the magnetic field (H1) 
inside of the loop is shown. 

Figure 20  



Table 1. Resonance frequencies observed for model cavity with vertical loop orientation from 0-
7 GHz and corresponding transverse electric modes expected to contribute.  
 

Frequency (GHz) Modes (TElmn) 

2.995 110 

3.221 014, 022, 102, 111 

3.428 014, 112 

3.684 113 

3.981 015, 024, 104, 120, 121 

4.229 031, 032, 114, 122 

4.589 025, 033, 105, 123 

4.625 016, 025, 033, 105, 123 

4.805 016, 025, 033, 105, 115, 124, 130 

5.025 124, 130, 131, 132 

5.426 
017, 026, 035, 041, 106, 116, 125, 133, 
201 

5.561 
017, 035, 041, 042, 116, 125, 133, 201, 
202, 210, 211 

5.727 
035, 042, 043, 134, 202, 203, 210, 211, 
212 

5.939 
027, 036, 043, 107, 117, 126, 134, 140, 
203, 212, 213, 220 

 
 

II. Final Microwave Cavity 
 
The original design of the microwave cavity included a circular loop of thin copper wire (Figure 
22) for the antenna. The loop was oriented in the XZ-plane, with a diameter of 1.2cm. 
Resonances were observed in the frequency spectrum generated by the VNA at and near the 
desired frequency of 2.87GHz, but with poor Q-factors.  
 
  



 
Figure 23 shows a resonance at 2.873 GHz in the spectrum generated by a VNA frequency 
sweep. The FWHM was found to be approximately 6.1 × 106 GHz, for a Q-factor of about 471.  
 
 

  

Original loop antenna diameter 1.2 cm oriented in XZ-plane of cavity for magnetic coupling 
between coaxial cable and microwave cavity. 

Figure 22  

∆𝜈𝜈 

𝜈𝜈 

Resonance observed in VNA-generated spectrum at 2.873 GHz with 0-
27 GHz frequency sweep for original loop antenna of one turn, with 
diameter1.2cm. The resonance yields a poor Q-factor, indicating 
unsatisfactory magnetic coupling between cavity and coaxial cable. 

Figure 23  
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It was thought that the low Q-factor was due to poor coupling with the loop antenna, as it was 
constructed from thin wire that was easily deformed and difficult to keep in-plane. As the loop is 
turned out of the desired plane, the magnetic field lines generated by the loop lie at an angle to 
those circulating in the cavity, weakening the magnetic coupling by decreasing 𝐻𝐻1

∥. To test this, a 
new loop antenna was constructed from thicker copper wire. The new antenna (Figure 24) 
consisted of two turns with an inner diameter of 0.9cm and an outer diameter of 1.3cm. It was 
thought that increasing the loop inductance would lead to stronger coupling between the coaxial 
cable and the cavity.  

 
Figure 25 shows a strong resonance at 2.894 GHz in the spectrum generated by VNA frequency 
sweep. The FWHM was found to be approximately 2.9 × 106 GHz, for a Q-factor of about 998. 
 

Coil antenna of two turns, inner diameter 0.9cm and outer diameter 1.3cm.  

Figure 24  

Resonance observed in VNA-generated spectrum at 2.894 GHz with 0-27 GHz frequency sweep 
for coil antenna of two turns, with inner diameter 0.9 cm. The resonance yields a better Q-factor 
than the original loop, indicating better magnetic coupling between cavity and coaxial cable. 
 

Figure 25  
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Table 2 lists the first four resonances observed in the VNA frequency spectrum and the 
corresponding modes for this antenna. Each of the observed modes has 𝑛𝑛 = 0 due to the loop 
orientation and resulting magnetic coupling. As the frequencies increase, the index 𝑙𝑙 increases as 
well, which is not surprising as increasing frequencies indicate decreasing wavelengths. The 
cavity length is the longest dimension, and hence, a larger number of half wavelengths may be 
accommodated in this dimension. 
 
Table 2. First four resonances produced by VNA frequency sweep for large coil antenna and 
corresponding transverse electric modes at a cavity length of 21.05cm. 

Frequency (GHz) Modes (TElmn) 
2.871 210 
3.23 310 
3.912 410 
5.037 120, 220, 610 

 
The coil antenna had a smaller diameter than the original loop antenna, and an extra turn. While 
the Q-factor improved, it was unclear as to which of these new features the increase could be 
attributed. Equation 2.6 indicates that the addition of a second turn should increase the coupling 
coefficient 𝛽𝛽. However, this would seem to insinuate that the cavity had been undercoupled 
before, yet undercoupling should result in a higher Q-factor (§1.2). However, the 25% decrease 
in loop diameter is expected to weaken the coupling, which may indicate that the cavity had 
previously been overcoupled instead, and the addition of the second loop did not increase the 
coupling so much as to prevent undercoupling. To determine which case was valid, a new loop 
antenna was constructed with two turns and a smaller diameter. This coil had an inner diameter 
of 0.495cm and an outer diameter of 0.851cm (Figure 26). 
 

Coil antenna of two turns, inner diameter 0.495cm and outer diameter 0.851cm.  
 

Figure 26  



 
This smaller coil revealed a Q of just over 800 (Figure 27), indicating that a smaller coil 
diameter had somehow made the coupling less favorable. This was an unexpected result. A 
smaller loop diameter should weaken the coupling, thereby also lessening the power lost via the 
antenna, and increasing the Q-factor. It is unclear at this time why this result was observed, but it 
may be an anomaly. All data for the larger coil but one frequency was lost after it was replaced 
with the smaller coil, leaving only one available Q for comparison.   
 

 
 
Table 3 lists the first three resonances observed in the VNA frequency spectrum and the 
corresponding modes for this antenna. The modes progress as discussed for the first coil antenna 
above. It is observed that for this antenna, there are fewer resonances in the lower range of 
frequencies, perhaps indicating poor coupling.   
 
Table 3. First three resonances produced by VNA frequency sweep for small coil antenna and 
corresponding transverse electric modes at a cavity length of 21.05cm. 

Frequency (GHz) Modes (TElmn) 
2.879 210 
3.289 310 
3.774 410 

 
 
 
 

𝜈𝜈 = 2.882 GHz 
𝑄𝑄 = 821 

∆𝜈𝜈 

𝜈𝜈 

Resonance observed in VNA-generated spectrum at 2.882 GHz with 0-27 GHz 
frequency sweep for coil antenna of two turns, with inner diameter 0.495 cm.  
 

Figure 27  
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The last antenna to be tested was a loop of a single turn, now with an inner diameter of 0.509cm 
(42% of the original inner loop diameter) and an outer diameter of 0.822cm. This loop yielded 
the highest Q-factor of the four antennas at approximately 1314 (Figure 28). This result is 
expected, as the power loss via the antenna is proportional to 𝑅𝑅0𝑛𝑛2, indicating that a single turn 
will result in a higher Q. It is also known that a larger loop diameter leads to stronger coupling, 
and so a smaller loop diameter will help to inhibit overcoupling. It was therefore determined that 
the low Q of the original loop was due to the large loop diameter, likely resulting in an 
overcoupled cavity.   
  

 
Table 4 lists the first four resonances observed in the VNA frequency spectrum and the 
corresponding modes for this loop antenna. The modes progress as discussed for the coil 
antennas above.  
 
Table 4. First four resonances produced by VNA frequency sweep for small loop antenna and 
corresponding transverse electric modes at a cavity length of 21.05cm. 

Frequency (GHz) Modes (TElmn) 
2.916 210 
3.357 310 
3.871 410 
4.454 510 
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Resonance observed in VNA-generated spectrum at 2.894 GHz with 0-27 
GHz frequency sweep for coil antenna of a single turn, with inner diameter 
0.509 cm. The resonance yields a better Q-factor than any previous antenna, 
indicating more favorable magnetic coupling between cavity and coaxial 
cable. 
 

Figure 28  
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Upon tuning the cavity to the desired frequency and achieving a preliminarily reasonable Q-
factor, the next step involved placing the microwave cavity into an external magnet with a 
nanodiamond sample inside and performing the magnetic resonance measurements. First, it was 
necessary to design holders for the cavity such that it would be kept flat and still within the 
magnet. These holders were ultimately 3-D printed, and are shown below in Figure 29.   
 

 
 
 
 
 

VI. CONCLUSION 
 

In order to obtain EPR spectra which can be used to accurately determine the density of NV 
centers in a given nanodiamond sample, it is necessary to use a cavity which is tuned to a lower 
frequency than is typically available with commercial EPR cavities in order to avoid powder 
dispersions which distort EPR signals. A cavity tuned to the zero-field splitting of the nitrogen-
vacancy center was developed, such that minimum magnetic field intensities are required during 
the external magnetic field sweep to achieve resonance, thereby decreasing the inclusion of the 
powder dispersions. The cavity includes an adjustable wall for fine tuning of the resonance, but 
is quite large relative to the typical EPR cavity, thus requiring larger samples. Future work will 
involve placing the cavity into an external electromagnet and performing a magnetic field sweep 
under a constant microwave frequency to obtain magnetic resonance measurements. These 
measurements are hoped to be of high enough quality that the NV density in an enclosed sample 
can be accurately quantified.  
 
 
  

Experimental setup showing microwave cavity, cavity holders, and external electromagnet.  
 
 

Figure 29  
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