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Intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic 

compound possessing both inherent magnetic order and topological electronic 

states. Such a material can provide a shortcut to various novel topological 

quantum effects but remains elusive experimentally so far. Here, we report the 

experimental realization of high-quality thin films of an intrinsic magnetic 

TI—MnBi2Te4—by alternate growth of a Bi2Te3 quintuple-layer and a MnTe 
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bilayer with molecular beam epitaxy. The material shows the archetypical Dirac 

surface states in angle-resolved photoemission spectroscopy and is demonstrated 

to be an antiferromagnetic topological insulator with ferromagnetic surfaces by 

magnetic and transport measurements as well as first-principles calculations. 

The unique magnetic and topological electronic structures and their interplays 

enable the material to embody rich quantum phases such as quantum anomalous 

Hall insulators and axion insulators in a well-controlled way.  

 

A topological insulator (TI) is non-magnetic, carrying gapless surface electronic 

states topologically protected by the time-reversal symmetry (TRS) (1, 2). Many 

exotic quantum effects predicted for TIs, however, need the TRS to be broken by 

acquired magnetic order (3). A remarkable example is the quantum anomalous Hall 

(QAH) effect, a zero-magnetic-field quantum Hall effect that had been sought after 

for over two decades until it was observed in a magnetic TI with ferromagnetic (FM) 

order induced by magnetic dopants (3-6). The experimental realization of the QAH 

effect paved the road for hunting many other novel quantum effects in TRS-broken 

TIs, for example topological magnetoelectric (TME) effects and chiral Majorana 

modes (3, 8, 9). However, magnetically doped TIs are notorious “dirty” materials for 

experimental studies: the randomly distributed magnetic impurities induce strong 

inhomogeneity in the electronic structure and magnetic properties, and the sample 

quality is sensitive to the details of the molecular beam epitaxy (MBE) growth 

conditions (10-12). Such a complicated system is often a nightmare for some delicate 

experiments such as those on chiral Majorana modes and topological quantum 

computation, and the strong inhomogeneity is believed to contribute to the extremely 

low temperature (usually <100 mK) required by the QAH effect (13). An ideal 

magnetic TI is an intrinsic one, namely a stoichiometric compound with orderly 

arranged and exchange-coupled magnetic atoms which features a magnetically 

ordered ground state, but becomes a TI when the TRS recovers above the magnetic 

ordering temperature. A thin film of such an intrinsic magnetic TI could be a 



congenital QAH insulator with homogeneous electronic and magnetic properties, and 

presumably higher QAH working temperature. Yet few experimental progresses were 

achieved in this direction in spite of several interesting theoretical proposals raised in 

the past years (14-16).  

Some stoichiometric ternary tetradymite compounds, which can be considered as 

variants of well-studied Bi2Te3 family 3D TIs, have been found to be also 3D TIs (17). 

A simplest system is XB2T4 where X is Pb, Sn or Ge, B is Bi or Sb, and T is Te or Se. 

Such a compound is a layered material with each septuple-layer (SL) composed of 

single atomic sheets stacking in the sequence T-B-T-X-T-B-T. If X were a magnetic 

element, there would be chance that XB2T4 is an intrinsic magnetic TI. A few works 

observed MnBi2Te(Se)4 in multi-crystalline samples, or as the second phase or surface 

layer of Bi2Te(Se)3, without figuring out their topological electronic properties 

(18-20). Interestingly, a SL of MnBi2Te(Se)4 on Bi2Te(Se)3 was reported to be able to 

open a large magnetic gap at the topological surface states of the latter (20, 21).   

In this study, we found that high-quality MnBi2Te4 films can be fabricated in a 

SL-by-SL manner by alternate growth of 1 quintuple-layer (QL) of Bi2Te3 and 1 

bilayer (BL) of MnTe with MBE. Amazingly, MnBi2Te4 films with the thickness d ≥ 

2 SL show Dirac-type surface states―a characteristic of a 3D TI. Low temperature 

magnetic and transport measurements as well as first-principles calculations 

demonstrate that MnBi2Te4 is an intrinsic antiferromagnetic (AFM) TI, composed of 

ferromagnetic SLs with a perpendicular easy axis which are coupled 

antiferromagnetically between neighboring SLs. Remarkably, a thin film of such an 

AFM TI thin film with FM surfaces is expected to be an intrinsic QAH insulator or 

axion insulator depending on the film thickness.  

To prepare a MnBi2Te4 film, we first grow a 1 QL Bi2Te3 film on a Si(111) or 

SrTiO3(111) substrate (22, 23). Mn and Te are then co-evaporated onto Bi2Te3 surface 

with the coverage corresponding to a MnTe BL with the sample kept at 200oC. 

Post-annealing at the same temperature for 10 minutes is carried out to improve the 

crystalline quality. This leads to the formation of a SL of MnBi2Te4 (see the schematic 



in Fig. 1A) (20), as experimentally proved and theoretically explained below. Then on 

the MnBi2Te4 surface, we grow another QL of Bi2Te3 which is followed by deposition 

of another BL of MnTe and post-annealing. By repeating this procedure, we can grow 

a MnBi2Te4 film SL by SL in a controlled way, in principle up to any desired 

thickness.  

The MnBi2Te4 film shows sharp 1×1 reflection high-energy electron diffraction 

streaks (Fig. S1) indicating its flat surface morphology and high crystalline quality. 

The X-ray diffraction (XRD) pattern (Fig. 1B, taken from a 7 SL MnBi2Te4 film) 

exhibits a series of peaks (marked by blue arrows), most of which can neither be 

attributed to Bi2Te3 nor to MnTe. From the positions of these XRD peaks, we can 

estimate the spacing between the crystalline planes to be ~1.36 nm, very close to the 

inter-SL distance of bulk MnBi2Te4 (1.356 nm) predicted by our first-principles 

calculations.  

High resolution scanning transmission electron microscopy (STEM) was used to 

characterize the real-space crystalline structure of a MnBi2Te4 film (5 SL). The 

high-angle annular dark field (HAADF) images (Figs. 1C and 1D) clearly show the 

characteristic SL structure of XB2T4 compounds, except for the region near the 

substrate where stack faults and dislocations are observed. Figure 1E displays the 

intensity profile along an atomic row across two SLs (cut 1 in Fig. 1C). One can see 

the atomic contrast varies a lot at different positions in a SL. The contrast of an atom 

in a HAADF-STEM image is directly related to its atomic number. The intensity 

distribution along a SL is thus well consistent with the Te-Bi-Te-Mn-Te-Bi-Te 

sequence. The electron energy lose spectroscopy (EELS) (Fig. 1F) reveals the Mn L2,3 

edges at ~645 eV. The intensity distribution curve of EELS at 645 eV (the pink line in 

Fig. 1F) taken along cut 2 in Fig. 1C shows a peak at the middle atom of each SL, 

which also agrees with the MnBi2Te4 structure.  

In-situ angle-resolved photoemission spectroscopy (ARPES) was used to map the 

electronic energy band structure of the MBE-grown MnBi2Te4 films. Figures 2A-2D 

show the ARPES bandmaps of the MnBi2Te4 films with the thickness d = 1, 2, 5, and 



7 SL, respectively, with the sample temperature at ~ 25 K. The spectra were taken 

around  point along the M--M direction of the Brillouin zone. The spectra of the d 

= 1 SL sample (Fig. 2A) shows a bandgap with Fermi level cutting the conduction 

band. The films with d ≥ 2 SL all show similar band structures (Figs. 2B-2D). One 

can always observe a pair of energy bands with nearly linear band dispersion crossing 

at  point forming a Dirac cone. Figures 2E and 2F show the momentum distribution 

curves (MDCs) and the constant-energy contours of the 7 SL sample, respectively, 

which exhibits an archetypal Dirac-type energy bands. It is worth to note that the 

Dirac-type bands are quite different from the topological surface states of Bi2Te3 (24, 

25). The band dispersion observed here is rather isotropic, as shown by the nearly 

circular constant-energy contours even at the energy far away from the Dirac point, 

which is distinct from the strongly warped Bi2Te3 topological surface states (25, 26). 

The Dirac point observed here is located right in the band gap, in contrast with the 

Bi2Te3 case where the Dirac point is below the valance band maximum. Moreover, the 

Fermi velocity near Dirac point is 5.5 ± 0.5×105 m/s, obviously larger than that of 

Bi2Te3 surface states (3.87~4.05×105 m/s in different directions) (25). Therefore the 

Dirac-type bands can only be attributed to MnBi2Te4, and, as demonstrated below, are 

also the topological surface states of a 3D TI.  

The orderly and compactly arranged Mn atoms in MnBi2Te4 are expected to give 

rise to a long-range magnetic order at low temperature. Figure 3A displays the 

magnetization (M) ― magnetic field (H) curves of a 7 SL MnBi2Te4 film measured 

with superconducting quantum interference device (SQUID) at different temperatures 

(Ts). The linear diamagnetic background contributed by the substrate and capping 

layer has been subtracted (the raw data are shown in Fig. S2). The unit of M is the 

magnetic moment (B) per in-plane unit cell (2D U.C.), i.e. the average magnetic 

moment of each Mn atom multiplied by the number of SLs. H is applied 

perpendicular to the sample plane. With decreasing temperature, hysteresis appears in 

the M-H curves and grows rapidly, exhibiting a typical FM behavior. The Curie 

temperature (TC) is 20 K according to the temperature (T) dependence of the remnant 



magnetization [Mr = M (0 T)] shown in Fig. 3B. The M-H curve measured with 

in-plane magnetic field has much smaller hysteresis than the curve measured with 

perpendicular one (see Fig. 3A inset, which were taken from another 7 SL MnBi2Te4 

sample). Therefore the magnetic easy axis is along the c direction [perpendicular to 

the (001) plane]. Estimated from the saturation magnetization Ms = 8 B/2D U.C., the 

Mn atomic magnetic moment is about 1.14 B which is much smaller than 5 B 

expected for Mn2+ ions. It suggests that Mn2+ ions in the material may have a more 

complex magnetic structure than a simple uniform ferromagnetic configuration.  

The ferromagnetism of 7 SL MnBi2Te4 film is also demonstrated by Hall 

measurements. Figure 3D displays the Hall resistance (Ryx) vs. H curves of a 7 SL 

film grown on SrTiO3(111) substrate measured at 1.6 K under different gate-voltages 

(Vgs). The SrTiO3 substrate is used as the gate dielectric for its huge dielectric 

constant (~20000) at low temperature (27). The curves exhibit hysteresis loops of the 

anomalous Hall effect (AHE) with a linear background contributed by the ordinary 

Hall effect (OHE). The slope of the OHE background reveals that the sample is 

electron-doped with the electron density ne ~ 1.11013 cm-2, which basically agrees 

with ne ~ 81012 cm-2 derived from the Fermi wavevector (kF ~ 0.07Å-1) of the 

ARPES-measured Dirac-type band. The hysteresis loops of the AHE confirm the 

ferromagnetism of the film with perpendicular magnetic anisotropy. The TC obtained 

from the Ryx-T curve is similar to that given by SQUID data (Fig. 2B). The Hc of the 

Ryx-H hysteresis loops is however larger than that of the M-H loops. Tuning the 

chemical potential of the film by applying different Vgs, we observe obvious change 

in the anomalous Hall resistance. The sensitivity of the AHE to the chemical potential 

suggests that the AHE is mainly contributed by the Berry curvature of the energy 

bands induced by intrinsic magnetism of the material instead of magnetic impurities 

or clusters (28).  

Noticeably, 6 SL MnBi2Te4 film shows different magnetic properties from 7 SL 

one. As shown in Fig. 3C, the hysteresis (Mr and Hc) in the M-H curve of a 6 SL film 

is rather small even at 3 K, and Ms decreases slowly with increasing temperature. 



Clearly the film is not dominated by long-range FM order. The M-H curves of the 

MnBi2Te4 films from 4 SL to 9 SL are displayed in Fig. 3E which will be analyzed 

below based on our theoretical results.  

Next we discuss the structure, magnetism and topological electronic properties of 

MnBi2Te4 with the above experimental observations and our first-principles 

calculation results. To understand the mechanism for the formation of MnBi2Te4, we 

calculated the energies of a MnTe BL adsorbed on a Bi2Te3 QL (Fig. 4A left) and a 

MnBi2Te4 SL (Fig. 4A right). The calculations show that the latter one has 0.51 

eV/unit lower total energy and is thus energetically more stable. The result is easy to 

understand in terms of valence states. By assuming Te2-, the former structure gives 

unstable valence states of Mn3+ and Bi2+ which tend to change into more stable Mn2+ 

and Bi3+ by swapping their positions. The atom-swapping induced stabilization thus 

explains the spontaneous formation of MnBi2Te4 with a MnTe BL grown on Bi2Te3. 

We calculated the energies of different magnetic configurations of MnBi2Te4 (Fig. 

S3) (23). It was found that the most stable magnetic structure is FM coupling in each 

SL and AFM coupling between adjacent SLs (i.e. A-type AFM), whose easy axis is 

out-of-plane (Fig. 4B). In MnBi2Te4, Mn atoms are located at the center of slightly 

distorted octahedrons that are formed by neighboring Te atoms. The FM intralayer 

coupling induced by Mn-Te-Mn superexchange interactions is significantly stronger 

than the AFM interlayer coupling built by weaker Mn-Te … Te-Mn 

super-superexchange interactions. Similar A-type AFM states were predicted to exist 

in other magnetic XB2T4 compounds (29). 

Figure 4C shows the calculated band structure of a 7 SL MnBi2Te4 film. We can 

observe Dirac-like energy bands around  point, which basically agrees with the 

ARPES data, expect for a gap (~ 52 meV) at the Dirac point. All the films above 4 SL 

show similar band feature with nearly identical gap values at the Dirac point, 

implying that the gapped Dirac cone is an intrinsic surface feature of the material. 

Purposely tuning down the SOC strength in calculations, the gap first decreases to 

zero and then increases (inset of Fig. 4C), which suggests a topological phase 



transition and thus the topologically non-trivial nature of the gap. Actually our 

calculations on the system reveal that bulk MnBi2Te4 is a 3D AFM TI with Dirac-like 

surface states that are gapped by the FM (001) surfaces with out-of-plane 

magnetization (29, 30).  

As illustrated in Fig. 4D and confirmed numerically, the gapped surface states can 

be described by an effective Hamiltonian H(k) = (xky - ykx) + mzz, where  is the 

Pauli matrix with z = ±1 referring to spin up and down, mzis the surface exchange 

field (2, 3). For films thicker than 1 SL, hybridizations between top and bottom 

surfaces are negligible. Thus, their topological electronic properties are determined by 

the two isolated surfaces, which have the same (opposite) mz for odd (even) number 

of SLs and half-integer quantized Hall conductance of e2/2h or -e2/2h depending on 

the sign of mz. Therefore, odd-SL MnBi2Te4 films are intrinsic QAH insulators with 

Chern number C = 1; meanwhile even-SL films are intrinsic axion insulators (C = 0) 

that behave like ordinary insulators in dc measurements but can show topological 

magnetoelectric effects in ac measurements (3). However, when the TRS is recovered 

above TC, the exchange splitting of the bands gets vanished while the SOC-induced 

topological band inversion remains unaffected. MnBi2Te4 thus becomes a 3D TI 

showing gapless topological surface states which are exactly the band structure 

observed in the ARPES measurements performed at 25 K (above TC).  

The theoretically predicted magnetic configuration of MnBi2Te4 (Fig. 4B) is 

supported by our magnetic measurements. For an odd-SL AFM MnBi2Te4 film, 

whatever the exact thickness, the net magnetic moment is only of 1 SL. It explains 

why the atomic magnetic moment of Mn estimated from the 7 SL MnBi2Te4 film 

(1.14 B) is much smaller than 5 B. The measured Ms = 8 B per 2D U.C. may have 

contributions from both the FM surfaces (supposed to be 5 B) and the AFM bulk 

which can give magnetic signals via canting or disorder. With the AFM arrangement 

of neighboring FM SLs, MnBi2Te4 films are expected to show oscillation in its 

magnetic properties as the thickness changes between even and odd SLs. We indeed 

observed even-odd oscillation in their magnetic properties as shown in Figs. 3E and 



3F. The remnant magnetization (Mr), which characterizes long range ferromagnetic 

order, is larger in odd-SL films than in even-SL ones. Hc shows similar oscillation 

below 7 SL, but increases monotonously in thicker films. It is because in an AFM film 

with FM surfaces, the Zeeman energy in magnetic field (Ez) is only contributed by the 

FM surfaces and thus invariant with film thickness, while the magnetocrystalline 

anisotropy energy (EMCA), which is contributed by the whole film, increases with 

thickness and thus becomes more difficult to be overcome by Ez. Besides, as shown in 

the 6 SL film (Fig. 3C) and other even-SL films, Ms in less sensitive to temperature 

than in odd-SL films. For a comparison, the differences between the M-H curves 

measured at 3 K and those measured above TC are displayed in the bottom column of 

Fig. 3E, which shows a clear even-odd oscillation (Fig. 3F). A rapid increase of Ms 

with decreasing temperature below TC is typical of ferromagnetic order. The magnetic 

signal from AFM canting, on the other hand, decreases or keeps nearly constant with 

decreasing temperature. So the odd-SL films obviously have more FM features.  

The large inter-SL distance (~1.36 nm) is expected to give a weak AFM coupling 

between neighboring SLs which can be aligned into FM configuration in a magnetic 

field of several tesla (31). We carried out a Hall measurement of a 7 SL MnBi2Te4 

film with H up to 9 T. As shown in Fig. 3G (the linear background of the OHE has 

been subtracted from the Ryx-H loop), besides a small hysteresis loop at low field 

contributed by the FM surfaces, Ryx resumes growing above ~ 2 T and is saturated at a 

higher plateau above 5 T. The phenomenon is typical of a layered magnetic material 

and presumably results from an AFM-to-FM transition (see the schematic magnetic 

configuration shown by the blue arrows in Fig. 3G). The FM configuration may drive 

the system into a magnetic Weyl semimetal phase (29, 30).  

In spite of the above evidences for an A-type AFM order of MnBi2Te4, there are 

still some observations which we have not yet fully understood. For example, the 

even-SL films show larger Ms than odd-SL ones above TC, which is particularly clear 

in comparing the 6 SL (Fig. 3C) and 7 SL (Fig. 3A) data at 30 K. We also notice that 

overall Ms shows a maximum around 6 SL and 7 SL at 3 K, regardless of even- or 



odd-SLs. Another confusion is that the magnetic properties revealed by Hall effect 

measurements are not fully consistent with those revealed by magnetization 

measurements: Ryx-H loops always show larger Hc than M-H loops, and oscillatory 

behaviors are barely observed in the AHE data of the films of different thicknesses. 

These phenomena should result from the interplays between the complex magnetic 

structures and topological electronic properties of the unique layered magnetic 

material and require a comprehensive study combing various techniques to clarify (31, 

32). Besides, we found that MnBi2Te4 films are relatively easy to decay at ambient 

condition: Ms of a sample decreases significantly after it is exposed in air for couple 

of days. This may also complicate the magnetization and magneto-transport 

measurement results. Finding an effective way to protect the material is crucial for the 

experimental investigations on this system and for the explorations of the exotic 

topological quantum effects in it.  
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Figures Captions 

Fig. 1. MBE growth and structural characterizations of MnBi2Te4 films. (A) 

Schematic illustrations of the MBE growth mechanism of 1 septuple layer (SL) 

MnBi2Te4 thin film. (B) XRD pattern of a MnBi2Te4 (MBT) film grown on Si(111). 

(C) Cross-sectional HAADF-STEM image of a 5 SL MnBi2Te4 film grown on a Si 

(111) substrate. (D) Zoom-in view of (C) with the structural model of MnBi2Te4. (E) 

Intensity distribution of HAADF-STEM along cut 1 in (C). (E) EELS spectra 

mapping along cut 2 in (C). The pink curve shows the intensity distribution of the Mn 

L2,3-edge along cut 2 in (C).  

 

Fig. 2. Energy band structures of MnBi2Te4 films measured by ARPES.  (A-C) 

ARPES spectra of 1, 2, 5, and 7 SL MnBi2Te4 films measured near the Γ point, along 

the M-Γ-M direction. (D) Momentum distribution curves (MDCs) of the 7 SL film 

from EF to −0.38 eV. The red triangles indicate the peak positions. (E) Constant 

energy contours of the 7 SL film at different energies. All the ARPES data were taken 

at 25 K. 

 

Fig. 3. Magnetic and magneto-transport properties of MnBi2Te4 films. (A) 

Magnetization vs. magnetic field (M-H) curves of a 7 SL MnBi2Te4 film measured 

with SQUID at 3 K (red), 10 K (orange), 15 K (green), and 30 K (blue), respectively. 

H is perpendicular to the sample plane. The inset shows M-H curves measured with H 

perpendicular to (red) and in (blue) the sample plane (a different 7 SL MnBi2Te4 

sample). (B) Temperature dependences of the remnant magnetization (Mr) and zero 

magnetic field Hall resistance (Ryx0) of a 7 SL film, which give the Curie temperature 

(TC). (C) M-H curves of a 6 SL MnBi2Te4 film measured with SQUID at 3 K (red), 10 

K (orange), 15 K (green), and 30 K (blue), respectively. H is perpendicular to the 

sample plane. (D) Ryx-H curves measured at 1.6 K at different gate voltages. (E) M-H 

curves of 4, 5, 6, 7, 8, and 9 SL MnBi2Te4 films measured at 3 K and right above TC 

(top column) and the differences between the curves at the two temperatures (bottom 



column). (F) Thickness dependences of Mr at 3 K, Mr difference at 3 K and above TC 

(top panel) and HC (bottom panel). (G) Ryx-H curve of a 7 SL MnBi2Te4 film 

measured at 1.6 K with H up to 9 T. The blue arrows indicate the magnetic 

configurations at different H. Each arrow represents the magnetization vector of a SL. 

 

Fig. 4. First-principles calculation results of MnBi2Te4. (A) Lattice structures of a 

MnTe bilayer adsorbed on a Bi2Te3 quintuple layer (left) and a MnBi2Te4 SL (right). 

Valence states of atoms were labelled by assuming -2 for Te. Atom swapping between 

Mn and Bi results in stable valence states, thus stabilizing the whole structure. (B) 

Atomic structure of layered MnBi2Te4, whose magnetic states are ferromagnetic 

within each SL and antiferromagnetic between adjacent SLs. Insets show Te-formed 

octahedrons together with center Mn. (C) Band structure of a 7-SL MnBi2Te4 film, 

which is an intrinsic QAH insulator (band gap ~52 meV), as proved the dependence 

of band gap on the strength of SOC (inset). (D) Schematic band structure of MnBi2Te4 

(001) surface states, showing a gapped Dirac cone with spin-momentum locking. The 

energy gap is opened by the surface exchange field (mz), which gets vanished when 

paramagnetic states are formed at high temperatures. 
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