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In the field of quantum magnetism, the exactly solvable Kitaev honeycomb model serves as a paradigm for
the fractionalization of spin degrees of freedom and the formation of Z2 spin liquid ground states. An intense
experimental search has led to the discovery of a number of spin-orbit entangled Mott insulators that realize
its characteristic bond-directional spin interactions and, in the presence of strong magnetic fields, exhibit no
indications of long-range magnetic order. Here, we map out the complete phase diagram of the Kitaev model
in tilted magnetic fields and report the emergence of a distinct gapless quantum spin liquid at intermediate
field strengths. Analyzing a number of static, dynamical, and finite temperature quantities using numerical
exact diagonalization techniques, we find strong evidence that this phase exhibits gapless fermions coupled to a
massless gauge field resulting in a dense continuum of low-energy states. We discuss its stability in the presence
of perturbations, Heisenberg and off-diagonal symmetric exchange interactions, that naturally arise in spin-orbit
entangled Mott insulators alongside Kitaev interactions.

Quantum spin liquids are highly entangled quantum states
of matter that exhibit fractionalized excitations [1]. A princi-
ple example for such a fractionalization are the spinon exci-
tations of a resonating valence bond (RVB) liquid [2], which
carry spin-1/2 and arise only after breaking apart a spin-1 ex-
citation originating from an elementary spin-flip process. Cru-
cially, once a pair of spinons has been created in an RVB liq-
uid, they can be separated to arbitrary distances at no energy
cost – the spinons are deconfined. This reveals the emergence
of a much larger underlying structure present in any quantum
spin liquid – a lattice gauge theory in its deconfined regime.
The interplay of fractionalization and lattice gauge theory can
be conceptualized by a parton construction [3], which decom-
poses the original spin degrees of freedom in terms of par-
tons that represent the emergent fractional degrees of free-
dom. These partons can be chosen to be complex Abrikosov
fermions [4], real Majorana fermions [5, 6], or bosons. Con-
comitantly, the system is found to be enriched by an emergent
gauge structure, with examples including continuous U(1) or
discrete Z2 gauge symmetry [7, 8]. One of the most beau-
tiful examples of a parton construction has been introduced
by Kitaev, who was able to devise an exactly solvable spin-
1/2 model on the honeycomb lattice with several quantum
spin liquid ground states [6]. Here, the fractionalization of the
original spin degrees of freedom into Majorana fermions and
an emergent Z2 gauge structure naturally appear in the frame-
work of Kitaev’s exact solution, which has led to a plethora
of theoretical investigations and deep analytical insights into
spin liquid physics [9].

On a microscopic level, the key ingredients of the Kitaev
model are its bond-directional Ising-type exchange interac-
tions. Remarkably, these seemingly unusual interactions are
found to be realized via an intricate interplay of spin-orbit
coupling, crystal field effects, and strong interactions [10, 11]
in a variety of 4d and 5d materials [12]. However, these
spin-orbit entangled Mott insulators are typically found to ex-
hibit ordered states at low temperatures in lieu of the sought-
after spin liquid physics, consistent with a theoretical analysis
of perturbed Kitaev magnets that exhibit more conventional

types of exchanges beyond a dominant bond-directional inter-
action [13–20].

Recently considerable excitement has arose due to the fact
that in one of these materials, RuCl3, the magnetic order can
be suppressed with an in-plane magnetic field [21–28]. Prob-
ably the most spectacular result is a report [29] for tilted field
directions, which suggests that a phase, intermediate between
the magnetically ordered state at low fields and the high-field
polarized state, exhibits a half-quantized thermal Hall conduc-
tance – a unique signature for a gapped topological spin liquid.
The precise nature of the putative quantum spin liquid regime
and its microscopic description, however, still remain open.

Motivated by these observations, we return to the original
Kitaev model and explore its phase diagram in the presence of
tilted magnetic fields using numerical exact diagonalization
(ED) techniques. As we report in this manuscript, there are
two distinct spin liquid regimes already present in this model.
For small magnetic field strengths, there is a gapped spin liq-
uid phase whose non-Abelian topological nature has first been
rationalized by Kitaev using perturbative arguments for a field
pointing along the out-of-plane [111] direction [6]. Here we
demonstrate that this phase is stable when tilting the mag-
netic field to generic directions and well beyond the pertur-
bative regime by explicitly calculating the modular S-matrix
from its (quasi-)degenerate ground states, which unambigu-
ously confirms that its inherent topological nature is indeed
given by the Ising topological quantum field theory (TQFT).
The second spin liquid, on which we focus in this manuscript,
is both manifestly distinct from the gapped topological spin
liquid and at the same time can be considered, in many ways,
to be a descendent of it. As we demonstrate in this manuscript,
one key distinction between the two phases is their underlying
gauge structure. While the Kitaev spin liquid is accompanied
by a Z2 gauge structure with gapped vison excitations in the
gauge sector, the second spin liquid is found to exhibit the
gapless gauge structure typically associated with a U(1) spin
liquid. By investigating the evolution of the energy spectrum,
the dynamical structure factor, and thermodynamic signatures
in the specific heat, we provide multi-faceted evidence that
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the phase transition between the two spin liquids at finite field
strengths is driven by the closing of the gap for vison exci-
tations of the Z2 spin liquid and that the emergent gapless
spin liquid is a U(1) spin liquid with a spinon Fermi surface.
We discuss aspects of the underlying field theory governing
this phase transition at the end of the manuscript. Finally, it
should be noted that the occurrence of two stable spin liquid
regimes in the Kitaev model exposed to a (tilted) magnetic
field is closely linked to whether the applied field matches the
underlying antiferromagnetic (AFM) or ferromagnetic (FM)
spin correlations, with an order of magnitude difference in the
critical fields between the two cases. Only for AFM Kitaev
couplings and a uniform magnetic field, do we observe the two
spin liquids discussed above. For FM Kitaev couplings the
gapped Kitaev spin liquid is found to be considerably less sta-
ble than in the AFM case, consistent with a number of recent
numerical studies [30, 31] (with [30] the first to also report
the existence of an intermediate phase for an AFM coupling).
Notably, this situation can be reversed by staggering the mag-
netic field, which dramatically increases the stability of the
FM Kitaev phase, while the AFM spin liquid then covers a sig-
nificantly smaller parameter space. To round off our discus-
sion, we demonstrate the stability of the emergent gapless spin
liquid when perturbing the Kitaev model with a conventional
Heisenberg interaction or an off-diagonal Γ-exchange, which
constitute further ingredients of the microscopic description
of Kitaev materials [17].
Model.– We start our discussion by considering the pure Ki-
taev honeycomb model in the presence of a uniform magnetic
field of arbitrary orientation, defined by the Hamiltonian

H± = ±K
∑
〈i,j〉∈γ

Sγi S
γ
j −

∑
i

h · Si , (1)

where H± indicates an AFM/FM Kitaev coupling and the
bond directions are denoted by γ ∈ {x, y, z}. We parametrize
the orientation of the magnetic field as h = h sin θ ĥ111 +
h cos θ ĥ⊥, where the unit vectors ĥ111 and ĥ⊥ point along
the [111] and either [112̄] or [1̄10] directions. For materials
such as (Na,Li)2IrO3 and RuCl3 these directions correspond
to the out-of plane, c-axis, and in-plane, a or b-axes, respec-
tively. The angle θ thus measures the tilt away from the hon-
eycomb planes.
Phase diagrams.– The phase diagram of the model for various
tilt angles of a uniform external magnetic field is presented in
Fig. 1 for both the AFM and FM Kitaev cases. The phase
boundaries, presented in this Figure, are based on a number
of different signatures, including the second derivative of the
ground state energy and the ground state fidelity (see Methods
for more details). There are certain limits which have previ-
ously been discussed:
(i) h = 0. In the case of zero magnetic field the Kitaev Hamil-
tonian is exactly solvable [6]. Following Kitaev’s original so-
lution, each spin-1/2 can be split into four Majorana fermions,
three are associated with the adjacent bonds and one with the
original site. The bond Majoranas can be recombined to form
a static Z2 gauge field, leaving us with a single free Majorana
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FIG. 1. Phase diagrams in a uniform magnetic field of (a) the
pure AFM Kitaev model and (b) the pure FM Kitaev model for var-
ious tilt angles. For AFM couplings the gapped Kitaev spin liquid
(KSL) is surrounded, for a wide range of tilt angles, by a gapless
spin liquid (GSL) before giving way to a trivial polarized state (PL).
For FM couplings, in contrast, the KSL is found to cover a consid-
erably smaller parameter region with no intermediate GSL. The two
(purple) points in (a) mark the parameters at which the dynamical
structure factor in Fig. 4(b) and (c) is plotted.

fermion moving in a background field. Its spectrum is gapless,
with Dirac points located at the corners of the Brillouin zone,
while the vison excitations of the gauge field remain gapped
[6, 9]. The net result is a gapless Z2 spin liquid.
(ii) h ‖ [111], h � K. In the presence of a magnetic field
along the [111] direction, Kitaev showed, using perturbation
theory, that a small field opens up a gap in the Majorana spec-
trum. Furthermore, the resulting Majorana insulator has a
non-trivial band structure, with a Chern number C = +1 for
the lower, fully filled band. This corresponds to a gapped non-
Abelian spin liquid with Ising anyon topological order, which
we will refer to as the Kitaev spin liquid (KSL). The gapped
flux excitations (visons) now bind a Majorana fermion and
there is a single chiral gapless Majorana edge mode, which
gives rise to a quantized thermal quantum Hall effect. Our
numerical data confirms that this scenario remains true away
from the perturbative limit, for generic field directions [32],
and applies to both the AFM and FM cases. Technically, we
do so by calculating [33] the modular S-matrix from the three
(quasi-)degenerate ground states in the KSL phase for vari-
ous parameters of Fig. 1. The entries Sab encode the braiding
properties of quasiparticles a and b in the underlying TQFT
(fixing the entries to certain universal values) and thereby al-
low for its unambiguous identification. Numerically, we find,
e.g., the following S-matrix

SED =

0.46 0.74 0.47
0.71 0.04e−0.91i −0.70
0.49 −0.67e0.02i 0.58e−0.13i

 , (2)

computed for a [111] field of magnitude h ∼ hcritKSL/2. For the
Ising TQFT the expected S-matrix has corner entries +1/2, a
middle entry of zero, and the remaining four entries ±1/

√
2.

We see that, even for the N = 24 site cluster at hand, we are
able to numerically resolve this structure, confirming that the
KSL is indeed a non-Abelian quantum spin liquid described
by an Ising TQFT.
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FIG. 2. Phase diagrams in a staggered magnetic field of (a) the
pure AFM Kitaev model and (b) the pure FM Kitaev model. The
pink shading marks a region of potential interest (not explored here).

(iii) h � K. For sufficiently large magnetic field the system
will clearly become polarized along the axis of the external
field. In this polarized phase (PL) the ground state is a trivial
product state and the lowest energy excitations are conven-
tional magnon modes.

The phase diagrams of Fig. 1 expand this perspective by
providing the critical field strengths, at which the KSL is de-
stroyed, for tilted field setups. As can be seen in Fig. 1 the
critical field does not depend sensitively on the field direction
(though in real materials anisotropic g-factors need to be con-
sidered that will distort the phase diagram). What is strikingly
evident, however, is that there is a marked contrast in the sta-
bility of the KSL in the case of AFM versus FM coupling,
with an order of magnitude difference in the critical fields. To
investigate the source of this difference we show in Fig. 2 the
phase diagrams for a staggered external field, with +h applied
on one sublattice and−h on the other sublattice of the honey-
comb lattice. We see that, in this case, there is still an order of
magnitude difference in the critical fields but now the situation
has been reversed. The AFM KSL is significantly less stable
in a staggered field compared to a uniform one, while the FM
KSL is less stable in a uniform field and significantly more sta-
ble in a staggered one. The stability of the KSL thus crucially
depends on whether the applied field matches the underlying
spin correlations or not. We expect this observation to gener-
ically hold and to also apply to the three-dimensional gener-
alizations of the Kitaev model [34] under an external field.
Though it is experimentally not possible to generate a stag-
gered field using conventional magnets, it may be possible to
realize the desired effect by placing thin samples of a Kitaev
material on a substrate which is a trivial honeycomb antiferro-
magnet, producing a staggered field by proximity, and thereby
allowing to probe this effect.
Intermediate gapless phase.– Beyond the KSL there is, for a
wide range of field angles in the case of AFM Kitaev cou-
plings, an intermediate phase before entering the high-field
PL state. To investigate the properties of this phase we focus
on two generic cuts away from any high-symmetry directions,
shown by the dashed (red) lines in Fig. 1, one close to the in-
plane [1̄10] direction at θ = 7.5◦ (π/24) and the other close
to the out-of-plane [111] direction at θ = 82.5◦ (11π/24).

FIG. 3. Energy spectrum, static spin structure factor, and pla-
quette flux for (a) - (c) a cut through the pure AFM Kitaev phase
diagram at an angle of θ = 7.5◦ and (d) - (f) at θ = 82.5◦. These
cuts correspond to the red dashed lines in Fig. 1(a).

One striking signature for the transition from the KSL to
this intermediate phase is a dramatic increase in the density
of states at low energies. This is illustrated in Figs. 3(a), (b),
which show the full low-energy spectrum as a function of in-
creasing field magnitude (obtained from numerical exact di-
agonalization) for the two cuts, with states labelled by their
momentum quantum number. Indeed, for the energy window
shown here there are more than 10 times as many states within
the intermediate phase as there are in the zero-field Kitaev
limit. This increase of the low-energy density of states by
more than an order of magnitude (in combination with no de-
generate ground-state manifold) is a strong indication that the
intermediate phase is in fact a gapless phase with considerably
more low-energy modes than the gapless KSL in the vanish-
ing field limit. This incredible density of states at low energies
is supported by finite-size scaling, shown in the Methods sec-
tion, making it a robust feature of the intermediate phase. Be-
yond the intermediate phase, we see that this plethora of low-
lying states quickly get pushed up linearly, consistent with the
notion that a spin gap begins to open upon the transition to the
PL state.

To probe the magnetic nature of this intermediate gapless
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FIG. 4. Dynamical spin structure factor for (a) the zero-field KSL,
(b) a point midway in the KSL phase and (c) a point in the middle
of the GSL along a path through all high-symmetry points of the
extended Brillouin zone as illustrated in (e). In (d) the intensity at
the Γ′ point is shown as a function of increasing field along the cut
θ = 82.5◦, the upper of the two dashed red lines in Fig. 1(a).

phase, we turn to the static spin structure factor of the ground
state, S(q) = 1

N

∑
i,j 〈Si · Sj〉 eiq·(ri−rj), which is plotted

in Figs. 3(c), (d) for the two cuts. There are no clear signs of
any magnetic ordering, with only the Γ point intensity (i.e. the
magnetization) significantly changing as the transition from
the KSL to the intermediate phase is crossed. The flat, rather
featureless structure factor of the intermediate phase is indica-
tive of a quantum spin liquid phase. We also show the flux of
the Z2 gauge field through the plaquettes of the honeycomb
lattice, 〈W 〉P =

〈
Sxi S

y
j S

z
kS

x
l S

y
mS

z
n

〉
, in Figs. 3(e), (f). This

quantity does not show visible signatures of the transitions.
The flux 〈W 〉P ≈ 1 in the KSL phase and 〈W 〉P ≈ 0 in the
PL phase. In the intermediate phase it takes a range of inter-
mediate values, interpolating between these two limits. This
indicates that the plaquette flux is heavily fluctuating in the in-
termediate phase. Taken together, all of these results are con-
sistent with a gapless, disordered state, allowing us to identify
the intermediate phase as a gapless spin liquid (GSL).

This immediately raises the question about the origin and
nature of the gapless degrees of freedom. To answer this ques-
tion it has proved particularly insightful to look at the the dy-
namical spin structure factor, which provides strong indica-
tions that it is the vison gap which closes at the transition to

0.01 0.05 0.10 0.50 1.00 5.00
0.00

0.05

0.10

0.15

0.20

0.25

T

C
v

0.01 0.05 0.10 0.50 1.00 5.00
0.00

0.05

0.10

0.15

0.20

0.25

T

C
v

0.01 0.05 0.10 0.50 1.00 5.00
0.00

0.05

0.10

0.15

0.20

0.25

T

C
v

h = 0.0 h = 0.475 h = 1.0

Majorana

Z2 Flux

h

KSL GSL PL

FIG. 5. Specific heat as a function of temperature for increasing
field along the cut at θ = 82.5◦ (upper panel). The black circles (and
their widths) indicate the location (and heights) of the maxima. The
three lower panels show specific heat scans for the zero-field KSL,
the intermediate GSL at h = 0.475 (note that though it is not shown
here, the specific heat goes to zero as T → 0), and the PL state at
h = 1.0, respectively. The light blue shading indicates the standard
deviation of the estimates.

the intermediate gapless phase. The dynamical spin structure
can be written in Lehmann representation as

Sαα (Q, ω) =
∑
n

| 〈n|SαQ |0〉 |2δ (ω − (En − E0)) , (3)

where from now on we will focus [35] on the sum S (Q, ω) =∑
α S

αα (Q, ω). At zero field there is, despite the system be-
ing gapless in this limit, a distinct gap to physical spin exci-
tations as these involve the creation of gapped Z2 flux excita-
tions [36, 37]. This flux gap is clearly visible in Fig. 4(a) [38],
with its uniformity across momenta reflecting the static nature
of the flux excitations. Note that the flux gap is absent at the Γ
point for the AFM Kitaev model due to the AFM correlations
of the ground state. Upon applying the magnetic field, this
uniform flux gap breaks apart and a significant portion of the
spin spectral weight is pushed to zero energy across the whole
Brillouin zone as illustrated in Fig. 4(b) for a point midway
in the KSL phase. These states are further pushed down in
energy as the transition to the intermediate phase is crossed,
with Fig. 4(c) showing results for a point in the middle of the
intermediate phase. The overall spin spectral weight of these
low-energy states makes up a significant part (∼ 40%) of the
zero-field flux gap. This is strong evidence that the transition
from the KSL to the intermediate phase is thus marked by the
closure of the flux gap [39]. In the intermediate phase the
dynamical structure factor at higher energies remains feature-
less, with weight distributed across all energies. There are no
signatures of pseudo-Goldstone modes or any kind of conven-
tional magnon excitations. These features support the case for
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FIG. 6. Phase diagrams beyond the pure Kitaev model: effects of (a-d) an additional Heisenberg and (e-h) an additional off-diagonal
Γ exchange on the KSL and GSL in tilted magnetic fields. In the presence of additional Heisenberg interactions both spin liquid phases
eventually give way to either zig-zag (ZZ) or antiferromagnetic (AF) ordering. The inclusion of the additional off-diagonal Γ-exchange affects
the stability of the spin liquid phases in a lesser way, with AF or vortex state (VS) order arising only for large coupling strengths. Note that in
all phase diagrams the GSL appears to piggypack on the KSL phase, indicating that it is in fact of a descendant of the KSL.

a gapless quantum spin liquid arising from the closing of the
Z2 flux gap.

The key role played by the flux excitations is also visible
at finite temperatures. In Fig. 5 we show the specific heat as
a function of increasing field, calculated using the method of
thermal pure quantum states [40, 41]. At zero field, it has
been established through numerical exact Monte Carlo simu-
lations [42] that there are two finite temperature crossovers,
a high-temperature one associated with the itinerant Majo-
rana fermions indicating the fractionalization of the original
spins and a low-temperature one associated with the Z2 gauge
field, at which it orders into its ground state configuration.
The location of these peaks is correlated to the bandwidth
of the fermion hopping and the vison gap in the gauge sec-
tor respectively. As one approaches the transition to the in-
termediate phase the low-T peak starts to drift to lower and
lower temperatures. This is another telling sign that the en-
ergy scale associated with the gauge field is lowered as the
field increases. Interestingly, the high-T peak does not show
any notable changes as the transition to the intermediate phase
is crossed. This would seem to suggest that the itinerant Ma-
joranas are not affected by the transition, with all of the action
occurring only in the gauge sector. Once the PL phase is en-
tered a single peak develops, as expected since fractionaliza-
tion is lost.

Beyond the Kitaev model.– Before turning to a discussion of
the nature of the intermediate gapless spin liquid phase, we
round off our numerical results with a study of its stability in
the presence of microscopic perturbations. In any Kitaev ma-
terial the bond-directional exchanges of the Kitaev model are
accompanied by other, more conventional, interactions such
as symmetric off-diagonal exchange terms (Γ-interactions)
along with an isotropic Heisenberg coupling [12, 17, 19]. In
Fig. 6 we illustrate phase diagrams elucidating the effects of
these additional couplings in the vicinity of the pure Kitaev
model for various tilt angles of the magnetic field [43]. It is
clear that the intermediate GSL is stable under both kinds of
perturbations. Indeed the stability of the GSL mirrors that
of the KSL, always sitting above it in these phase diagrams.
This suggests that the intermediate phase is in fact a descen-
dent of the KSL, resulting from an instability of the gapped
Ising anyon phase.
Discussion.– To summarize our key results, we have estab-
lished that the Kitaev honeycomb model contains another
phase exhibiting unconventional magnetism alongside its al-
ready well-known gapless and gapped Z2 spin liquid phases.
This additional phase is gapless with a dense continuum of
excitations, featureless structure factor (both static and dy-
namic), fluctuating Z2 fluxes, and low-energy spin spectral
weight.
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To reveal the precise nature of this phase the central ques-
tion is what its gapless degrees of freedom are – matter or
gauge fields or both? Though this question is difficult to an-
swer definitively, we interpret our results as providing multi-
faceted evidence for the emergence of a U(1) spin liquid, in
which gapless fermions are coupled to a massless gauge field.
Our conclusion is guided by the following observations:
(i) The energy spectrum shows that the transition from the
KSL to the GSL occurs through the dramatic shift of a large
density of states to low energies, forming a dense continuum
of gapless excitations. The dynamical structure factor reveals
that these states carry with them physical spin spectral weight
at all momenta. Since we know from exact studies at zero field
that only the vison excitations of the KSL (but not the Majo-
rana fermions) carry spin spectral weight, this indicates, sup-
ported also by the thermodynamic signatures in the specific
heat, that this transition is marked by the closing of the vison
gap, resulting in a massively fluctuating gauge field. Naively,
one could identify this gap closing with vison condensation
which in turn should lead to confinement and a trivial, mag-
netically ordered phase (such as the transition from the KSL
to zig-zag magnetic ordering in the presence of additional
Heisenberg interactions [16]). However, in the KSL, the vi-
sons carry a Majorana zero mode (which is the hallmark of its
topological order) and so cannot condense by themselves. If
the visons indeed avoid condensation at the gap closing transi-
tion, this leads to an intriguing scenario in which their associ-
ated Majorana fermions form a gapless Fermi surface coupled
to a massless gauge field.
(ii) An interesting perspective on the transition to the GSL can
be gained by considering an alternative Abrikosov fermionic
parton decomposition of the spin operators. Such partons nat-
urally possess an accompanying U(1) gauge structure. If we
imagine starting from a phase in which the fermionic partons,
coupled to such a U(1) gauge field, form a Fermi surface the
KSL can naturally be accessed through a pairing instability
of the fermions [44, 45]. The formation of a superconduct-
ing condensate Higgses the gapless U(1) gauge field down
to a gapped Z2 gauge field. In order to properly match the
topological properties of the KSL, the superconductor must be
a chiral p-wave superconductor, which ensures, for example,
that flux excitations can bind Majorana fermions [46]. Start-
ing from zero field, we see that, in this picture, the transition
from the KSL to the intermediate GSL can be understood as a
transition from a gapped chiral p-wave superconductor, cou-
pled to a gapped Z2 gauge field, to a gapless spinon Fermi
surface, coupled to an emergent U(1) gauge field. The Fermi
surface can be stabilized by a lack of lattice symmetries and
momentum conservation [47].

The key to the realization of this scenario in the present
context is that we can have an emergent U(1) conservation
of the fermionic partons, with the closure of the vison gap
thus related to the emergence of this conservation law. The
Majoranas remain intact throughout the transition, with the
only change being that, in the GSL, the Majoranas can now
be combined into complex fermions with an emergent U(1)

KSL GSL PL
h

�v

�f

E

Gauge Field:

Fermions: Gapped 
Topological SC

Gapless Fermi
Surface

Gapped
Trivial Insulator

U(1) U(1) (confined)(Higgsed)Z2

(Higgsed)

FIG. 7. Schematic phase diagram from the perspective of an
Abrikosov fermionic parton decomposition of the spin operators,
with the behavior of the gauge field and fermions indicated for the
KSL, GSL and PL phases. The flux (vison) gap ∆v and the fermion
gap ∆f is also shown.

particle conservation. This explains why the Majorana peak
in the specific heat is relatively unaffected as the transition to
the GSL is crossed.

The transition from the GSL to the PL phase can be sim-
ilarly understood within this framework, corresponding to a
transition from a gapless Fermi surface to a trivial gapped in-
sulator. With the fermions completely gapped, they can be in-
tegrated out to produce a low-energy theory of a pure compact
U(1) gauge theory. However, such a theory is well-known to
be unstable to confinement via monopole proliferation, result-
ing in a completely trivial gapped phase, the PL phase. The
complex Abrikosov fermion perspective thus naturally gives
an intuitive and unified description of all of the numerical data
at hand. This is summarised in Fig.7 in which the behavior of
the gauge field and fermionic partons in the KSL, GSL and
PL phases is detailed.
(iii) This parton perspective also motivates a natural field the-
ory description of the transition from the KSL to the GSL in
terms of a single doped Dirac cone coupled to a dynamical
U(1) gauge field

L= ψ̄
(
/Da−m+γ0µ

)
ψ+∆

(
ψTψ + h.c.

)
+

1

2

1

4π
ada+. . . ,

(4)
where |µ| > m, the higher order terms include a kinetic term
for the dynamical gauge field a and we have included a back-
ground Chern-Simons term at level 1/2 [48]. For ∆ = 0 we
have a doped Dirac cone with a (small) Fermi surface cou-
pled to a dynamical U(1) gauge field. This corresponds to the
GSL phase. Though normally one might expect such a Fermi
surface to be immediately susceptible to a pairing instability,
here we have an extended phase, with the Fermi surface sta-
bilized by the lack of lattice symmetries and momentum con-
servation discussed above [49]. At the transition pairing on-
sets, such that for ∆ 6= 0 the fermions become gapped and
can be safely integrated out. At lowest order, this leaves the
Chern-Simons term at level 1/2, ensuring that in vortex cores
(where the superconducting condensate vanishes) there is a
bound Majorana fermion [46], and a mass term for the gauge
field generated by the Anderson-Higgs mechanism. This cor-
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responds to the KSL phase. This simple, minimal theory is
thus able to capture the physics either side of the transition.

(iv) Let us mention, for completeness, an alternative scenario
for the transition between the KSL and GSL. The scenario,
which we can definitively rule out based on our numerical
data, starts from the KSL and argues [50, 51] that instabili-
ties of this topological phase can be driven by the condensa-
tion of Ising anyons, which are brought into close proximity
with increasing field strength. However, the ensuing phase is
still a chiral spin liquid (albeit with an Abelian topological or-
der) which would reveal itself through a ground-state degener-
acy that we do not observe in our numerical data for the GSL
(in contrast to the KSL where the three-fold quasi-degenerate
ground states strongly corroborate its topological nature via
the S-matrix calculation showcased above).

In conclusion, our numerical analysis of the complete phase
diagram of the Kitaev model in tilted magnetic fields has
revealed that this fundamental model harbors not only Z2

spin liquid physics, but also exhibits an extended spin liquid
regime with a distinct U(1) gauge structure. Our numerical
observation of the phase transition between these two regimes
at finite field strengths provides a multi-faceted perspective of
the accompanying signatures in static, dynamical, and finite
temperature quantities. It will be an interesting avenue for fu-
ture theoretical studies to further investigate the field theory
description for this transition, which clearly lies beyond the
standard Landau-Ginzburg-Wilson paradigm. Though cur-
rrent Kitaev materials are all believed to possess FM Kitaev
couplings, the possibility of an AFM coupling is not ruled
out on any miscroscopic grounds (early reports suggested that
RuCl3 possessed exactly such an AFM coupling) and indeed
there is recent work suggesting that they may naturally appear
in f -electron based systems [52]. Future experimental studies
on such Kitaev materials might be able to probe the nature of
the fractional excitations in the gapless spin liquid regime and
reveal the existence of a Fermi surface.

Acknowledgements. We thank A. Rosch for useful discus-
sions. This work was supported by the DFG within the Trans-
regio CRC 183 (project B01). The numerical simulations
were performed on the CHEOPS cluster at RRZK Cologne.

Note Added: During completion of this manuscript a related
preprint [53] has been posted, which studies the phase dia-
gram of the Kitaev model in a [001] magnetic field using a
Majorana mean-field approximation. While that work does
not discuss the underlying gauge structure of the intermedi-
ate phase, it proposes a transition of the Majorana spectrum
from gapless Dirac nodes to a nodal line (Majorna Fermi sur-
face) structure – a scenario reminiscent, but distinct from the
(spinon) Fermi surface physics of the U(1) spin liquid put for-
ward in this manuscript.
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hubbard mott insulator: From tetrahedral spin crystal to chiral
spin liquid, Phys. Rev. Lett. 116, 137202 (2016).

Supplemental Material

EXACT DIAGONALIZATION AND FINITE-SIZE SCALING

The exact diagonalization results were produced using the library ARPACK [56], primarily on an N = 24 site cluster with
the full point group symmetry of the honeycomb lattice, and containing all the high symmetry points of the Brillouin zone.
Additional calculations were done on system sizes ranging from N = 18 to N = 32 sites, with qualitatively consistent results.

For a point mid-way in the GSL phase we show in Fig. S1(a) the energy difference between the ground state and the lowest
lying state from each momentum sector for N = 18, 20, 24, 28, 30 and 32 site clusters. The N = 18, 24 and 32 site clusters
are highlighted in red as these are are the only clusters that have the full point group symmetry of the honeycomb lattice.
Unfortunately, unlike the N=24 site system, the N = 18 and 32 site clusters do not contain all of the high-symmetry points in
the BZ, marking out the N = 24 site cluster as unique and why we chose to show data for this cluster in the main manuscript.
For the largest system sizes the density of states at low-energies increases with increasing system size, with the largest gap for
any momentum sector in the N = 32 site case being just 0.004K. We also use a solid (red) line to indicate the gap to the first
excited state for the symmetric clusters. The finite-size scaling is clear evidence that the intermediate phase is gapless, with an
incredibly dense spectrum of excited states at low energies from all momentum sectors.

We also show the spin spectral weight associated with the first excited state,
∑
α | 〈1|SαQ |0〉 |2, in both the KSL and GSL

phases for the three symmetric clusters in Fig. S1(b) (for the KSL we choose the first excited state above the ground state
degenerate manifold). In the KSL phase, since all of the spectral weight is concentrated above the finite flux gap the weight

0.00 0.01 0.02 0.03 0.04 0.05
0.000

0.005

0.010

0.015

0.020

1/N

E
n
-
E
0

(a)

(b) (c)

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/N

h

hKSL
crit

hPL
crit

KSL

GSL

0.00 0.01 0.02 0.03 0.04 0.05
10

-10

10
-8

10
-6

10
-4

10
-2

1/N

|<
1
|S
Q
|
0
>

2

FIG. S1. Finite-size scaling of (a) the energy gaps between the ground state and the lowest lying state from each momentum sector for a point
mid-way in the GSL phase, (b) the critical fields associated with the transition out of the KSL and into the PL phase and (c) the spin spectral
weight associated with the first excited state in the KSL and GSL phases. All data is taken along the cut corresponding to the upper of the two
dashed lines (red) in Fig. 1(a).

http://dx.doi.org/10.1103/PhysRevLett.115.177205
http://dx.doi.org/ 10.1007/BFb0119592
http://arxiv.org/abs/1611.06990
http://dx.doi.org/10.1103/PhysRevLett.108.126805
http://dx.doi.org/10.1103/PhysRevLett.108.126805
http://dx.doi.org/ 10.1103/PhysRevLett.116.137202


2

✓ = 7.5� ✓ = 82.5�
(b)

(c) (d)

(a)

KSL GSL PL

KSL GSL PL

KSL GSL PL

KSL GSL PL

0.0 0.2 0.4 0.6
0.96

0.97

0.98

0.99

1.00

h

F
(h
)

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

h

d
2
E
/d
h
2

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

h

d
2
E
/d
h
2

0.0 0.2 0.4 0.6
0.96

0.97

0.98

0.99

1.00

h

F
(h
)

FIG. S2. Clear signatures of phase transitions in (a), (b) the second derivative of the ground state energy and (c), (d) the ground state fidelity.
These cuts correspond to the dashed lines (red) in Fig. 1(a).

associated to the first excited state is practically zero. On the other hand, at the same point mid-way in the GSL phase, the flux
gap has collapsed to zero with the first excited state now showing finite spin spectral weight. This clearly demonstrates that the
field-induced closure of the flux gap, via the transfer of spin spectral weight to zero energy, is a robust feature of the intermediate
phase.

Finally we show the critical fields associated with the transition out of the KSL, hKSLcrit , and the transition into the PL phase,
hPLcrit, in Fig. S1(c). This clearly indicates that the intermediate phase is stable and its size is roughly ∼ 0.2K for the cut shown.

DETERMINATION OF THE PHASE BOUNDARIES

The phase boundaries for the phase diagrams presented in the main text were determined using a combination of the second
derivative of the ground state energy and the ground state fidelity, taken from a range of radial cuts (26 in angular spacings
of π/100 and radial field spacing of 0.01/0.001 for the AFM/FM cases, a total of 1976 points) for each of the three 2d phase
diagrams presented in Figs. 1 and 2 (i.e. a total of 6000 parameter points were computed for each of Fig. 1(a), (b), Fig. 2(a),
(b)). For the ground state energy, it is a peak in its second derivative which indicates the presence of a phase transition. The
ground state fidelity is defined as F (g) = 〈Ψ0(g)|Ψ0(g + δg)〉 for some tuning paramter g (in our case the magnitude of the
magnetic field h). A first order transition, i.e. a level crossing, is signified by a discontinuity in the fidelity, while a second
order transition results in a smooth dip. For the two cuts focused on in the main text, θ = 7.5◦ and θ = 82.5◦ in the c-b
plane, we show in Fig. S2 these two quantities as a function of field magnitude. Two transitions can clearly be resolved, with
excellent agreement between the two distinct quantities. Finally, we note that we also find excellent agreement between the
phase boundaries computed for our N = 24 site cluster and the phase boundaries reported in a recent infinite density matrix
renormalization group study of the Kitaev model in a [111] magnetic field [31].

EXACT DIAGONALIZATION RESULTS IN CONTEXT

For those that may not necessarily be familiar with the energy scales typically encountered in exact diagonalization (ED)
studies we would like to highlight the smallness of the gaps encountered in this work when compared to some known ED results.
In particular we can compare to:

• The regular Heisenberg antiferromagnet on square, triangular and honeycomb lattices. In all cases the ground state is
magnetically ordered with gapless Goldstone modes. Examples of spin gaps from ED include, ∆ = 0.288 for an N = 36
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FIG. S3. Dynamical spin structure factor at various high-symmetry points including (a) Γ′, (b) one of the M points, (c) one of the X
points, and (d)-(f) the three distinct K points. The intensity is shown as a function of increasing field along the cut θ = 82.5◦, the upper of the
two dashed red lines in Fig. 1(c) of the main text.

site symmetric square cluster, ∆ = 0.123 for an N = 36 site symmetric triangular cluster and ∆ = 0.214 for an N = 32
site symmetric honeycomb cluster. Even the reported extrapolated gaps, taken from considering a range of system sizes,
are much larger than those in the GSL (for all cluster sizes we have studied), being ∆∞ = 0.025 for the square lattice
(taken from 12 lattices ranging from N = 18− 40), ∆∞ = 0.129 for the triangular lattice (taken from 12 lattices ranging
from N = 24 − 36) and ∆∞ = 0.050 for the honeycomb lattice (taken from 14 lattices ranging from N = 6 − 38). All
values are taken from [57] and references therein.

• The Kagome lattice Heisenberg antiferromagnet (KHAFM). There is an ongoing debate as to whether this is a gapless
Dirac spin liquid or a gapped Z2 spin liquid. In either case the gap between the ground state and first excited state should
go to zero for a torus geometry (for the Dirac SL because it is gapless and for the Z2 QSL because there should be a four-
fold ground state degeneracy). A recent ED study has investigated N = 36, 42 and 48 site clusters [58]. The encountered
gaps are ∆ = 0.010, 0.020 and 0.021, respectively. In other words, if we take the smallest ED gap for the KHAFM (the
N = 36 site cluster), then we can fit the lowest lying state from every single momentum sector within this gap for our
N = 30 and 32 site clusters. If we take the ED gap from the largest system size studied, the N = 48 site cluster, then for
all of our clusters, N = 18 − 32 sites, we can fit the lowest lying state from every single momentum sector within this
gap.

• Recent studies of Kalmeyer-Laughlin chiral spin liquids. Such phases have a two-fold degenerate ground state manifold
(GSM) for a toroidal geometry which is exponentially split on finite sized systems, meaning the gap between the ground
state and first excited state should scale to zero. As a particularly enlightening comparison we can compare our N = 32
site honeycomb results with results for CSLs on N = 32 site honeycomb lattices. Comparing to data from [59] and [60]
they find gaps of ∆ = 0.011 and ∆ = 0.035 respectively. For our N = 32 site results we can again fit at least 16 states
(one from each momentum sector) within these gaps.

In summary, when compared to other ED studies for states, which we either know to be gapless or know/suspect to have a
ground state degeneracy, the gaps encountered in our study are exceptionally small, not just for the first excited state but for the
lowest lying state in every single momentum sector.
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FIG. S4. Dynamical spin structure factor for (a) the zero-field KSL, (b) a point midway in the KSL phase and (c) a point in the middle of
the GSL along a path through all high-symmetry points of the extended Brillouin zone for the cut θ = 7.5◦, the lower of the two dashed red
lines in Fig. 1(c) of the main text.

DYNAMICAL STRUCTURE FACTOR

In the main text, it has been argued that the flux gap at zero field breaks apart and moves to lower energy as the external
magnetic field is increased, eventually closing fully as the transition to the GSL is crossed. As an example we showcased, in
Fig. 4(d) of the main manuscript, the intensity at the Γ′ point as a fucntion of field magnitude, with two transitions clearly
visible as the spin gap closes at the KSL-GSL transition, remains closed throughout the GSL phase, and then reopens again at
the GSL-PL transition. Here we show similar plots for other high-symmetry points, namely examples of M , X and K points.
At all of these momenta the same trend is undoubtedly present, with the flux gap at zero field being broken apart and physical
spin spectral weight being pushed down to zero energy as the GSL is entered.

However we note that, depending on the field direction, this trend may not be true for all momenta. In particular, if the field
along a particular spin axis is small, the points in momentum space associated with the corresponding spin component will not
be as strongly affected (as spin and momentum space are intrinsically linked together in the Kitaev model, for example the bond
in real space associated with say the x-component of the spin translates into a particular direction in the BZ). As a result the flux
gap will only fully collapse for those momenta along which the corresponding field magntidue is large. An example of this is
shown in Fig. where we plot the dynamical spin stucture factor in the middle of the GSL along the cut at θ = 7.5◦ away from
the [1̄10] axis. In this case the field along the z-axis, hz , is much smaller compared to the other two components. This results in
the flux gap remaining at, say, X1 and K1 for example.

DIRECT KSL-PL TRANSITION

Along certain field directions there is a direct transition from the KSL to the PL phase, with no intermediate GSL phase. In
Fig. S5 we show a selection of data for such a scenario. In particular we take a cut at 30◦ away from the [1̄10] direction, within
the honeycomb plane, toward the [111] direction, perpendicular to the plane. We show the energy spectrum, the dynamical
structure factor for the Γ′ point and the specific heat as a function of increasing field magnitude.
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FIG. S5. Direct KSL to PL transition data with (a) the energy spectrum, (b) the dynamical spin structure factor at the Γ′ point, and (c) the
specific heat shown for a cut 30◦ away from [1̄10] toward [111].
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FIG. S6. Phase diagram in uniform magnetic field for the pure FM Kitaev model. There are just two phase and a single transition, between
the KSL and PL phases.

FERROMAGNETIC KITAEV PHASE DIAGRAM

For ferromagnetic Kitaev exchange the phase diagram in tilted magnetic fields exhibits just two phases, the gapped KSL and
the trivial PL phase. The phase diagram is shown in the main text in Fig. 1(b). In Fig. S6 we provide the same phase diagram,
but with the axes scales reduced by an order of magnitude so as to make the boundaries of the KSL phase more visible.
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