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Abstract

The competition between disorder and Coulomb interaction leads to the depletion of the
single-particle density of states in the Anderson insulators near the Fermi energy known as the
Coulomb gap. The Coulomb gap is a thoroughly studied phenomena in solid state physics. It
was conventionally believed that in order to observe such a gap numerically, one must enforce
first-order stability criterion to generate a pseudo ground state, which corresponds to ensuring
that the ground state energy is minimized with respect to the single-particle hopping. We
believe that only the zeroth-order stability, which ensures all occupied single-particle levels
are below the Fermi level, more or less reproduces the depletion of DOS near Fermi level. We
propose a probabilistic argument regarding the algorithm used for the simulation and compare
our proposed theory with the conventional Efros’ self-consistent theory. We also explore the
validity of our arguments in power-law interactions outside of the Coulomb interaction.

I Introduction

The effects of long-range Coulomb interaction in highly disordered systems are observed in the
diminishing of the single particle density of states near the Fermi level.[1][2][3][4] This phenomena
is the Coulomb gap which is a soft gap in the single particle density of states for localized states.
The term Coulomb gap was coined by Efros and Shlovskii; however, there were studies before
by Pollak[5], Srinivasan[6] and Ambegaokar that documented and explored the diminishing of
the density of states near the Fermi level due to electron-electron interaction. The Efros model,
designed to simulate the Coulomb gap, is a lattice half-filled with electrons in which on-site
potentials are randomly assigned and electrons are subsequently filled in sites below the Fermi
level[1]. The dominance of long-range Coulomb interaction leads to similar energies being unable
to be close to each other near the Fermi level[4].

These effects have been documented by many experimentalists and can be shown in numerical
simulation of the Coulomb gap. The total energy of the system given by Efros is:
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Here ¢; is the on-site potential of site i, n; is one if there is an electron at site i and zero if there is
not an electron, g; and g; are the charges of sites i and j given by
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Finally, r;; is the distance between site i and site j. From the Hamiltonian we can derive the single
particle energy as
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This is the energy to bring an electron from infinity to an unoccupied site i within the lattice.

Efros assumed random ordering of particles in the system and predicted the density of states of the

Coulomb gap to follow
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Here « is the power of r in the Coulomb potential, and d is the dimension of the system. The
Coulomb gap can be shown numerically by enforcing two criterion, zeroth and first-order, in the
energy minimization process.[1] Zeroth-order criterion ensures that all electrons in the system
are below the Fermi level. First-order criterion requires zeroth-order stability to be satisfied and
that the energy to move an electron from below the Fermi level to a site above the Fermi level
is a positive value. We believe the zeroth-order criterion is sufficient to simulate the Coulomb
gap based on a probabilistic approach. We assume the electrons in the initial state are randomly
positioned. We then argue that in order for zeroth-order stability criterion to be satisfied, all
electrons must be below the Fermi level. In this case it is probabilistically favorable that the
number of sites disordered to the wrong side of the Fermi level on the last step of the zeroth-order
criterion is small. This number is given by
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Here L is the linear length of the system, and a is the distance between each site in the lattice.



This number is so small because only the last step of the zeroth-order stability criterion relaxation
could push surrounding electrons to the wrong side of the Fermi level and be unaccounted for. The
probability that zero sites will be pushed to the wrong side of the Fermi level is given by

Prnosites = e_N = (_)d 6)

From this argument, we propose the single particle density of states in localized states in the system
are given by
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From equation 6, we expect as dimension increases there will be less variation between zeroth
and first-order stability since the probability of no sites being disordered exponentially grows with
dimension. In this project, we attempt to accurately simulate the Coulomb gap satisfying only
zeroth-order criterion. We test the effectiveness of zeroth and first-order stability criterion in 1D,

2D, and 3D systems. We also compare the success of Efros’ conventional theory to our proposed
theory.

II Method

In this experiment we simulated the Coulomb gap in a highly disordered system. The gap forms
when the highly disordered system is in its ground state.[4] Finding the ground state of a highly
disordered system is, however, a difficult problem. Numerically, a pseudo ground state is obtained
by relaxing the electrons in the lattice by two criterion. The highly disordered system was simulated

by creating a virtual lattice in which positive charge g = % was applied to every state. On-site

energies were then randomly assigned positions with energy between a range of values (—w,w). In
our experiment the on-site potential spanned randomly from (—1,1). The probability distribution
is given by [2]
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The sites in the lattice below the Fermi level were occupied with an electron with charge g = —1
which leaves each occupied site with net charge g = — % while the sites above the Fermi level were

left unoccupied with net charge ¢ = 4. This process ideally will lead to a system in which the total
charge is zero. In our simulation, there was usually minuscule net charge which was small enough
that it negligibly affected our results. After the non-interacting lattice was populated with electrons,
the Coulomb interaction was calculated for each electron and subsequently the single particle
energy of each site. The Coulomb interaction leads to some occupied sites being excited above
the Fermi level and some unoccupied sites to have energy below the Fermi level. The algorithm
then searches the lattice for the electron furthest above the Fermi level and the unoccupied site
furthest below the Fermi level. The occupancy of these two minimum and maximum sites are
swapped. The Coulomb interaction is then recalculated for each site in the new configuration of
the lattice. This process continues until there are zero occupied sites above the Fermi level and zero
unoccupied sites below the Fermi level. This is the zeroth-order stability criterion of the simulation
in which we believe is the only necessary criterion. First-order criterion goes a step further after
the completion of zeroth-order stability criterion. The first-order stability criterion is satisfied by
enforcing the following inequality when E; >0 and E; <0
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This means that the energy to move any electron from below the Fermi level to a site above
the Fermi level is greater than zero. If all of these energies are greater than zero, the system has
reached the first-order criterion pseudo ground state. If the energy required to swap an electron
to an unoccupied site is less than zero, then the system is not in the most energetically favorable
configuration. In this case, the algorithm moves the electron to the more energetically favorable
unoccupied site and relaxes the lattice by enforcing zeroth-order criterion. First order criterion
is then once again enforced. This process continues until both criterion are satisfied. The single
particle energies ¢; in the zeroth-order pseudo ground state and first-order pseudo ground state are
recorded when the corresponding criterion are satisfied. The simulations of the Coulomb gap were
created for 1D, 2D, and 3D lattices. The code allowed us to experiment with various parameters
including the potential, the parameter for the range of on-site potentials,w, and the number of
realizations in each run.

IIT Results and Discussion

We have found that there is obvious diminishing of the single particle density of states for localized
states while only enforcing zeroth-order stability, and zeroth and first-order stability criterion
behave differently in various potential and dimension.

We began our experiment by testing the effectiveness of zeroth and first-order stability criterion
in one, two, and three dimensions. We noticed that as dimension increases there is less variation
between zeroth and first-order stability criterion. This effect can be seen in Figure 1, Figure 2 and
Figure 3. This result was expected from equation five which exponentially relates the probability
of no sites being excited to the wrong side of the Fermi level to the dimension of the simulated
lattice.

We explored various potentials in order to observe how first-order and zeroth-order stability
criterion differ while modelling systems which are not highly disordered. For this reason we tested
the simulation of many potentials. We chose to explore various potentials for a one-dimensional
lattice for computational efficiency. The findings in the one-dimensional toy model can be easily
generalized to more complex higher dimensional arguments. We found that in potential closer to
a = 1, o being the power of the separation,r, in the denominator of Coulomb potential, zeroth
and first-order stability have more agreement. This can be shown in Figure 1 and Figures 4-8. As
alpha decreases to oo = 0.1, zeroth and first-order stability become increasingly distinct from one
another.
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After evaluating how the two criterion differed in various potentials we wanted to compare our
results to the Efros’ original prediction for the density of states and to our new proposed prediction.
Efros’ prediction and our proposed prediction are in complete agreement and successful predicting
the density of states for ¢ = 0.5. For that reason the blue proposed curve can not be seen in Figure
7. As alpha increases and decreases from this case, however, Efros’ theory begins to drastically
fail compared to our proposed theory as shown in Figure 8 and Figure 9. In all cases, our proposed
theory either matches or exceeds the prediction by Efros’ theory.

IV Conclusions

We have found explicit evidence that both zeroth and first-order stability criterion lead to a diminishing
of the single particle density of states for localized states near the Fermi level. There is less
variation between zeroth and first-order stability criterion in higher dimension, and as the power
of the distance in Coulomb interaction decreases first and zeroth-order stability become less alike.
We have also proposed a new prediction for the Coulomb gap in various potentials which fits with
our data as well or better than Efros’ conventional prediction in every case. Finally, we have found
that the enforcement of zeroth and first-order stability criterion in multiple potentials successfully
finds a configuration of the system close to the ground state. The first and zeroth-order pseudo
ground state are approximations to the true ground state. The algorithm we implemented can be
utilized to determine complex ground states.
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