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Abstract: In this study we model various attenuated total reflection spectroscopy experiments to 
find the experimental signatures of magnetic polaritons in antiferromagnets. Isotropic materials 
and two-sublattice uniaxial antiferromagnets are discussed. Our simulations reveal that bulk and 
surface magnetic polariton modes can be observed in these antiferromagnets, and they also 
provide information about important experimental considerations for attenuated total reflection 
experiments.   
 

Section I: Introduction 

Magnetic Materials and the Terahertz Frequency Range 

In some materials, it is possible for different groups of atoms to spontaneously arrange 
themselves into distinct magnetic sublattices, where the spins of each atom in a sublattice are all 
oriented in the same direction. Antiferromagnets in particular have multiple magnetic sublattices 
with the spins of each sublattice oriented antiparallel to each other, resulting in zero net 
magnetization. Antiferromagnets also have a magnetic resonance frequency, which is typically 
dependent on the magnetic field applied to the material, material properties such as the exchange 
and anisotropy fields, and the relative orientation of the applied magnetic field and the crystal 
lattice [1]. In order to extract information from spectroscopic experiments about the properties of 
magnetic materials, including antiferromagnets, it is often necessary to use radiation of a 
frequency close to their magnetic resonance. Many antiferromagnets have magnetic resonances 
in the range of a few terahertz (THz) (1 THz=1012 Hz) [2,3], which makes THz radiation an ideal 
tool for studying the magnetic properties of antiferromagnets. In this study, we will simulate the 
interactions of a THz probe with various types of antiferromagnets. 

Magnons are magnetic quasiparticles sometimes referred to as “spin waves” – collections of 
oscillations of the spins of neighboring atoms that create a wave-like structure. Naturally, these 
particles have a characteristic frequency. When light of a similar frequency comes near a magnon, 
a magnetic polariton can be created – the combination of a photon coupled to a magnon [4]. From 
a fundamental standpoint, one of the reasons that it is interesting to study antiferromagnets is to 
learn about the behavior of magnon and polariton states that may exist in them. 

The general focus of our modeling is to simulate an experiment that can probe antiferromagnetic 
materials using terahertz radiation, and that can detect signatures of magnetic polaritons in these 
materials. Specifically, we aim to simulate an experiment that can detect and characterize surface 
magnetic polariton states in antiferromagnets. 

The Permittivity and Permeability Tensors 

The electric permittivity and magnetic permeability of isotropic materials are related to the 
permittivity and permeability of free space by their relative permittivity 𝜀𝑟 and relative permeability 
𝜇𝑟. For anisotropic materials, however, we must instead use the permittivity and permeability 

tensors �⃡� and �⃡� . These tensors are typically 3x3 matrices that relate the electric or magnetic field 
and flux density by Equations 1.1 and 1.2 [5]: 
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𝑫 = �⃡�𝑬 

𝑩 = �⃡� 𝑯 

For the purposes of this study, we will assume that the permittivity tensor is simply an identity 

matrix multiplied by the isotropic permittivity (though this is not necessarily true). We will instead 

focus on the magnetic properties of antiferromagnets, expressed by their permeability tensor. The 

permeability tensor of antiferromagnets is frequency-dependent and can contain off-diagonal 

terms under certain circumstances – for example, if an external magnetic field is applied [6]. The 

form of this tensor will be discussed further in Section II. 

Attenuated Total Reflection 

One technique that can be useful for characterizing magnetic materials is attenuated total 
reflection (ATR). Figure 1.1 shows a schematic that illustrates the working principle of this 
experiment. An electromagnetic wave enters a triangular prism and reflects off the bottom surface. 
Under the prism is a gap (a vacuum or some other material) with an index of refraction lower than 
the index of the prism. There is some critical angle 𝜃𝑐 between the incident light and the normal 
(marked with a dashed line) above which the 
light will be totally internally reflected, and it 
can be found using Snell’s law [7]: 

𝑛𝑝 sin[𝜃𝑝] = 𝑛𝑔 sin[𝜃𝑔] 

𝜃𝑝 = sin−1 [sin[𝜃𝑔] 
𝑛𝑔

𝑛𝑝
]  

Where 𝑛𝑝 and 𝑛𝑔 are the refractive indices of 

the prism and the gap, respectively, and 𝜃𝑝 

and 𝜃𝑔 are the angles between the light and 

the normal in the prism and the gap. To find 

the critical angle, we say that 𝜃𝑔 =
𝜋

2
 and 𝜃𝑝 =

𝜃𝑐, so Equation 1.4 becomes: 

𝜃𝑐 = sin−1 [
𝑛𝑔

𝑛𝑝
] 

Above this critical angle, and with only a vacuum (and no sample) below the prism, the energy of 
the reflected wave will always equal the energy of the incident wave. However, if a sample is 
introduced below the prism, the evanescent wave created during the total internal reflection can 
interact with the sample, and this can cause the reflected wave to have less energy than the 
incident wave (it is attenuated) [3,6]. The evanescent wave propagates only a short distance 
below the prism, so the sample must be very close to observe this effect (in the order of 10-100 
µm). The signal typically collected from this experiment is the reflectivity 𝑅 of the electromagnetic 
wave, which we define as: 

𝑅 = |𝑟|2 

Where 𝑟 is the complex reflection coefficient. By measuring the reflectivity for different frequencies 
of light, different gap distances between the prism and the sample, and by varying other 
experimental parameters, this experiment can produce data that can be useful for the study of 
magnetic properties of materials, or for other types of characterization [6,8,9].  

(1.6) 

(1.1) 

(1.2) 

Figure 1.1: Schematic of a typical 

ATR experiment 

(1.3) 

(1.4) 

(1.5) 
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Our calculations here are done for s-polarized (electric field perpendicular to the plane of 
incidence) and p-polarized (E-field in the plane of incidence) incident light. The electric field 
directions for these polarizations are shown in Figure 1.1. For many experimental configurations 
and materials, the reflected light will be of the same polarization as the incident light (i.e., s-
polarized incident light will produce reflected s-polarized light). However, in some cases, and 
particularly for anisotropic materials, it is possible that s-polarized incident light can create p-
polarized reflected light, and vice versa. We call a reflection with incident s-polarized light and 
reflected p-polarized light “s-p”; if the incident and reflected light are both s-polarized, it is “s-s”, 
and similar notation is used for p-p and p-s reflections [6]. 

In order to analyze the reflected light, we must solve Maxwell’s equations for each of the waves 
present inside each material in Figure 1.1. It can be demonstrated that the wavevector of each of 
these waves is related to the eigenmodes of their magnetic fields by the following equations [10], 
using the Einstein summation convention and the Levi-Civita symbol 𝜖𝑖𝑗𝑘: 

(𝜖𝑖𝑗𝑘𝒌𝑗[�⃡�
 −1]𝑘𝑙𝜖𝑙𝑚𝑛𝒌𝑚 + 𝜔2 �⃡� 𝑖𝑛)𝑯𝑛 = 𝟎 

This equation simplifies when all materials involved are isotropic: 

(𝒌𝒌𝑇 − 𝒌𝑇𝒌𝑰3 + 𝜔2𝜀𝜇𝑰3)𝑯 = 𝟎 

Once we solve this equation to find all the wavevectors and eigenmodes of the electric and 
magnetic fields, we can solve for the magnitudes of the incident and reflected electric fields using 
Maxwell’s equations and boundary conditions applied at the bottom surface of the prism and the 
top surface of the sample, as pictured in Figure 1.1 [10]. After that, the calculations to find the 
reflectivity are straightforward. 

These quantities are solved for the incident and reflected wave inside the prism, but the electric 
field magnitudes we found could be easily used to find those quantities outside the prism with the 
application of the Fresnel equations in the following form [7]: 

𝑡𝑠 =
2𝑛𝑖 cos[𝜃𝑖]

𝑛𝑖 cos[𝜃𝑖] + 𝑛𝑡 cos[𝜃𝑡]
 

𝑡𝑝 =
2𝑛𝑖 cos[𝜃𝑖]

𝑛𝑖 cos[𝜃𝑡] + 𝑛𝑡 cos[𝜃𝑖]
 

Where 𝑡𝑠 and 𝑡𝑝 are the transmission coefficients of s- and p-polarized light entering the prism, 𝜃𝑖 

and 𝜃𝑡 are the angles of incidence and transmission, and 𝑛𝑖 and 𝑛𝑡 are the indices of refraction 
of the material outside the prism and the prism, respectively. These transmission coefficients 
could be easily calculated using the design of the experimental setup. It not incorporated into our 
simulations for simplicity, but it would need to be considered for a model of experimental data. 

Section II: Results of Simulations 

Isotropic Materials 

For all of these simulations, we assume that the gap is vacuum, and that the prism is made of 
pure silicon. We chose silicon because it is mostly transparent to radiation in the THz regime and 

because its index of refraction allows us to use an angle of incidence of 𝜃 =
𝜋

4
, which is convenient 

for experiments [11].  

Let’s first consider an ATR experiment with a silicon prism, a vacuum gap, and an isotropic sample 

with an index of refraction 𝑛. The angle of incidence is 
𝜋

4
 from the normal, and the incident radiation 

(1.7) 

(1.8) 

(1.9) 

(1.10) 
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is monochromatic, with an arbitrary frequency of 1 THz (the behavior discussed here is the same 
for any frequency in the range of 0.1-10 THz, and we do not consider magnetic resonances for 
isotropic samples). The results concern the reflectivity (as defined in Equation 1.6) of our setup 
as a function of the gap distance (𝑑, the distance between the sample and the prism in Figure 
1.1). These plots are given in Figure 2.1 and 2.2. The first thing that should be noted is that the 
s-p and p-s reflectivity are zero, as we expect for an isotropic material [10]. The s-s and p-p 
reflectivities are plotted here for multiple values of 𝑛 – Figure 2.1 contains values of 𝑛 from 2.5 to 
3.42 (the refractive index of silicon) and Figure 2.2 contains values from 3.42 to 20. Lower indices 
of refraction are not used because at approximately 𝑛 = 2.41, the reflectivity of any polarization 
goes to 1 for all distances (indicating that experimentally there would be no signal). At high 
distances (𝑑 ≈ 50 𝜇𝑚), both the s-s and the p-p reflectivities approach 1. This is expected 

because the angle of incidence 
𝜋

4
 is sufficient for total internal reflection to take place when there 

is no sample for the evanescent wave to interact with. Furthermore, when 𝑛 = 3.42 (the sample 
has the same refractive index as silicon), the reflectivities approach zero at 𝑑 = 0 𝜇𝑚. This is 
necessary because under those circumstances the experiment simplifies to an electromagnetic 
wave entering a continuous block of silicon.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Reflectivity vs gap distance for various polarization combinations 

and indices of refraction below 3.42. The angle of incidence is 𝜃 =
𝜋

4
 and the 

incident light has frequency 𝑓 = 1 THz. 
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Two-Sublattice Uniaxial Antiferromagnets 

 Next, we move on to antiferromagnets. We will again assume for our calculations that the prism 
is made of silicon and that the gap between the prism and the sample is vacuum. We consider in 
this report antiferromagnets with two magnetic sublattices and a single easy axis parallel to the 
surface of the sample. We must first calculate the frequency-dependent permeability tensor �⃡�  for 
our sample, which requires a few material properties, the relative orientation of the easy axis and 
the externally applied magnetic field, and a generalized damping constant Γ included by the 

substitution 𝜔 = 𝜔 + 𝑖Γ. The damping constant is primarily related to the temperature of our 
sample, so from this point forward we consider low-temperature (~20 K) measurements because 
they are necessary to lower the damping constant Γ enough to collect a usable signal [6]. For a 
simple two-sublattice uniaxial antiferromagnet, the permeability tensor takes the form:  

�⃡� (𝜔) = [

𝜇𝑥𝑥 𝜇𝑥𝑦 0

𝜇𝑦𝑥 𝜇𝑦𝑦 0

0 0 𝜇𝑧𝑧

] 𝜇0 

The expressions for each matrix-element term in Equation 2.1 are given for multiple experimental 
configurations in reference [6]. For the special case of a two-sublattice uniaxial antiferromagnet 
with the easy axis and the applied magnetic field oriented in the same direction and parallel to the 
surface, the terms take the following form: 

 

(2.1) 

Figure 2.2: Reflectivity vs gap distance for various polarization combinations 

and indices of refraction above 3.42. Experimental conditions are the same as 

those of Figure 2.1. 
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𝜇𝑥𝑥 = 𝜇𝑦𝑦 = 1 + 4𝜋𝛾2𝐻𝐴𝑀𝑆(𝑌
+ + 𝑌−) 

𝜇𝑥𝑦 = −𝜇𝑦𝑥 = 4𝑖𝜋𝛾2𝐻𝐴𝑀𝑆(𝑌
+ − 𝑌−) 

𝜇𝑧𝑧 = 1 

Where 𝑌± = (𝜔𝑟
2 − (𝜔 ± 𝛾𝐻0)

2)−1. 𝐻𝐴 is the anisotropy field, 
𝑀𝑆 is the sublattice magnetization, 𝛾 is the gyromagnetic 

ratio, and 𝜔𝑟 is the bulk magnetic resonance frequency. If 
there is no applied field, the off-diagonal terms become zero 
and there is one resonance frequency. However, as the 
applied field 𝐻0 increases, two resonance frequencies 
emerge and move farther apart with greater field. This is 
typical of antiferromagnets; a sample antiferromagnetic 
resonance frequency plot is given in Figure 2.3. If the easy 
axis is instead aligned perpendicular to the magnetic field, the 
𝜇𝑧𝑧 term is no longer one, and it has a different resonance 
frequency than the other terms.  

Note that in Equation 2.1, the axes conventions 
are defined so that the y-axis is normal to the 
surface of the sample. To rectify this, we must 
apply a transformation to the tensor, so that in 
accordance with our geometry given in Figure 2.4, 
the permeability tensor takes the form [2]: 

�⃡� (𝜔) = [

𝜇𝑥𝑥 0 𝜇𝑥𝑧

0 𝜇𝑦𝑦 0

𝜇𝑧𝑥 0 𝜇𝑧𝑧

] 𝜇0 

This geometry is defined by the normal axis (z) 
and the direction of the applied magnetic field (y). 
For this report we will consider only experimental 
configurations with the easy axis of the sample 
and the applied magnetic field aligned parallel to 
the sample surface.  

For the initial calculations on uniaxial 
antiferromagnets, we are interested primarily in 
their polariton signatures in reflectivity 
measurements. Sample reflectivity curves are 
calculated for the frequently studied two-sublattice 
uniaxial antiferromagnet FeF2. The lattice 
structure of FeF2 (which is body-centered 
tetragonal) is pictured in Figure 2.5. The blue 
spheres represent iron atoms with spin up, and the 
red spheres represent iron atoms with spin down. 
These groups form two magnetic sublattices, with 
the easy axis oriented as shown [1]. Calculated 
reflectivity curves for FeF2 are given in Figures 2.6 
and 2.7. For these figures, the easy axis is aligned 
in the same direction as the applied magnetic field, 

Figure 2.4: Experimental geometry. The z-

axis is normal to the surface of the sample 

(pictured), H0 is applied in the y-direction, 

and the easy axis is in the xy-plane. 

    Figure 2.3: Typical  
    antiferromagnetic resonance  
    frequency plot. ωr is the zero- 
    field resonance frequency. 

Figure 2.5: Lattice structure of the two-

sublattice uniaxial antiferromagnet FeF2. 

The magnetic sublattices are shown in blue 

(spin up) and red (spin down). 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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and the plane of incidence is perpendicular to that axis (it is the xz-plane in Figure 2.4). Only s-s 
reflection is considered at this time. From Figures 2.6 and 2.7 we can observe the changes in the 
calculated reflectivity signal for various values of the damping constant Γ, the gap distance 𝑑, the 
angle of incidence with respect to the normal 𝜃, and the applied magnetic field 𝐻0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: s-s reflectivity vs wavenumber with varying a) damping constant, and b) gap 

distance. The applied magnetic field is 3T and the angle of incidence is 
𝜋

4
, with a) 𝑑 = 10 𝜇𝑚, 

and b) Γ = 0.1 𝑐𝑚−1. The easy axis and the applied magnetic field are parallel to each other 

and to the surface, and they are both perpendicular to the plane of incidence. The resonance 

frequencies are marked with dashed lines. 

 

a 
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Figure 2.7: s-s reflectivity vs wavenumber, with varying a) angle of incidence, and b) applied 

magnetic field. The gap distance is 10 µm and the damping constant is 0.1 cm-1, with a) 𝐻0 =

+3 𝑇, and b) 𝜃 =
𝜋

4
. The easy axis and the applied magnetic field are parallel to each other and 

to the surface, and they are both perpendicular to the plane of incidence. The resonance 

frequencies are marked with dashed lines. 

a 
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Section III: Analysis and Conclusions 

Discussion of Results 

Let’s first focus on the data in Figure 2.6a. For the curve with Γ = 0.05 cm−1, the resonance signal 

at approximately a wavenumber of 48 or 49 cm−1 has two distinct regions: first a smaller 

“depression” in the reflectivity curve, and then a sharp “dip” at ~𝑘 = 49.2 cm−1. This broad, 
shallow signature corresponds to light coupling with bulk polaritons in FeF2, and the narrow signal 
corresponds to surface polaritons. This behavior is explained by the dispersion curves of FeF2 
given in [6]. Further evidence is given in Figure 2.7b, where we can observe that these polariton 
signatures are non-reciprocal (they are different for +𝐻0 and -𝐻0). In FeF2, bulk polariton modes 

are reciprocal, but surface polariton modes non-reciprocal – the +𝑞 surface polariton mode is 
present only at the lower-wavenumber resonance, and the −𝑞 surface polariton mode is present 
only at the higher-wavenumber resonance [6]. In the lower-wavenumber resonance, we observe 
both bulk and polariton modes for the +𝐻0 measurement, but only the bulk modes for the -𝐻0 
measurement. The opposite is true for the higher-wavenumber resonance. 

In addition, we observe in Figure 2.7a a critical angle somewhere between 𝜃 = 0.23𝜋 and 𝜃 =
0.25𝜋 above which incident light will be totally reflected, except at the magnetic resonances. 
Below this angle, the incident light will only be partially reflected, and polariton signatures may be 
more difficult to interpret. Note that this critical angle is different than the classically defined critical 
angle given in Equation 1.5 that would be present without any sample. 

We know that to obtain an optimal signal in an ATR experiment, we need our sample to have a 
low damping constant Γ and we need the ability to reach low separation distances. However, it 
appears that a low damping constant (most likely attained by temperatures in the range of 5-20 K 
[6]) is more important for this purpose than the gap distance. In Figure 2.6b, we can see that for 

a damping constant of Γ = 0.1 𝑐𝑚−1, a significant signal is visible until a separation of greater than 
100 µm is reached. However, Figure 2.6a shows that the signal disappears rapidly after the 
damping constant reaches just a few cm-1. In addition, it becomes very difficult to distinguish 
visually the bulk and surface polariton regions at damping constants higher than 0.5 cm-1.  
However, they can still be identified by recognizing that in FeF2 bulk polariton modes are 
reciprocal and surface polariton modes are not, and this effect is measurable even for high Γ and 
𝑑 values. 

The curves in Figures 2.6 and 2.7 are calculated for an experimental configuration with the easy 
axis parallel to the applied magnetic field and to the surface of the sample. However, the 
permeability tensor is changed if the magnetic field is applied perpendicular to the easy axis and 
parallel to the surface. Under these conditions, the µyy term in Equation 2.5 has a different 
resonance frequency than the µxx, µxz, µzx, and µzz terms. However, in an experiment these 
resonances are usually too close to distinguish, and in fact with this configuration it will be difficult 
to observe any peak splitting at all. Extremely high magnetic fields would be required to see 
distinct resonances in a graph like Figure 2.7b.  

Experimental Considerations 

Figures 2.6 and 2.7 are important primarily because they outline the basic experimental 
requirements that are necessary to measure a useful ATR reflectivity signal (at least, for FeF2 in 
the given experimental configuration). In an ideal experiment attempting to replicate these 
findings, the damping constant should be less than 1 cm-1, the gap distance should be in the order 
of 10 µm, and magnetic fields of at least 1-2 T should be possible. In addition, the angle of 
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incidence should be above the critical angle mentioned earlier (𝜃 =
𝜋

4
 is a good choice with a 

silicon prism, since it satisfies that condition and it is convenient for experiments).  

In general, under these conditions and for the given sample and experimental setup, it is expected 
that the polariton signatures shown could be observed in an experiment. In addition, for low 
damping constants, it is expected that distinct bulk and surface polariton regions should be 
possible to observe. The non-reciprocal nature of surface polaritons could be observed at slightly 
higher damping constants; however, to accomplish this, the direction of the magnetic field or of 
the incident light would need to be reversed to probe the +𝑞 and −𝑞 modes visible for magnetic 
fields of +𝐻0 and -𝐻0, respectively. 

Conclusions 

We have accomplished two of the primary goals of this study, namely: developing a model that 
can simulate the ATR reflectivity results expected for isotropic materials and for antiferromagnets, 
and using this model to observe surface polariton modes in the antiferromagnet FeF2. In addition, 
we have found a group of experimental guidelines that should be followed in an actual THz ATR 
spectroscopy experiment, although slight variances are expected for changes in sample material 
or in the magnetic field or easy axis orientation. Strictly speaking, the data given in Figures 2.6 
and 2.7 is only valid for FeF2 and for an experiment with the easy axis and magnetic field parallel 
to each other and to the sample surface, with the incident plane perpendicular to the easy axis. 
However, in certain cases it may be appropriate to apply these findings to similar experiments.  

In that sense, this model is not yet complete. A possible direction for future development of our 
simulations is to expand the model for different experimental setups to include every possible 
geometry of the magnetic field, easy axis, and plane of incidence. We may later do these 
calculations for different classes of materials as well, such as easy plane antiferromagnets, 
antiferromagnets with more than two magnetic sublattices, or ferrimagnets. 
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