


Structure of the lecture

1. Introduction (20%)
Thermodynamics
Transport what? Mass, entropy, charge, magnetization, ...
Onsager
2. Electrons (50%)
Types of transport
Charge, spin, heat fluxes
Band transport
Multicarrier transport
Transport of spins on conduction electrons
3. Magnons (30%)
Fluxes of spins on localized electrons: magnons
Spin and heat fluxes
Advective transport
Spin Seebeck effect



Thermodynamics

U is the internal energy

U(X,, Xy ...Xﬂ ,...) is a macroscopic function of size of the system

S is the entropy.

Entropy is the function that, by definition, gets maximized as the system tends
to equilibrium

S(Xp, Xy ...Xﬂ ,...) is a macroscopic function of size of the system

The ensemble of the extensive properties Xi fully define the internal energy and
the entropy of the system

If S(X) or U(X) are known, all thermodynamic properties of the system are
known. They are the fundamental equations for the state of the system.



Thermodynamic potentials

The potentials are related to the derivatives of the entropy vis-a-vis their respective

extensive properties .
T aS ¢I — _T -1 68
ou 8X

Thermal Temperature T Entropy S Spec. Entropy
Electrical Electrochemical Electric moment Polarization density
potential 1, P
Magnetic Magnetic field H Magnetic moment M Magnetization
density
Mechanical Stress O Deformation (4Ax Ay Az) Strain 5
Mechanical Pressure p Volume V 1
(gas or liquid)
Chemical Electrochemical Number of particles N Density (N/V)
potential 1,



Equilibrium thermodynamics

not describing compositional changes, i.e. no chemistry

Outer figure: potentials (intensive variables)

Voltage Magnetic field

<
——

Electric moment gnetic moment

Strain

Volume Entropy
Stress
Pressure Temperature

Most quantities are tensors, but energy, entropy are scalar
J. F. Nye, “Physical properties of crystals™, Oxford, Clarendon (1960) )



Irreversible thermodynamics = transport

Flux |; of extensive property X.:
 _mass _
- particle number
- charge
- entropy
- spin (magnetic moment)

Driven by thermodynamic force g = -V@ gradient of a potential,

Gradient in:

- pressure => mechanical force drives water through a pipe
- chemical potential => force that drives diffusion

- electrochemical potential => electric field drives current

- temperature => thermal gradients drive heat flow

- magnetization => magnetic force keeps your magnet on
F = V(MY®eLy refrigerator door



Continuity equation

dX. .
Integral — 14 dA =2 !
dt A JI I ]Y"n.
Differential (Gaup) 8X(,3t/V N V'ji _ zi Y,

A is any imaginary closed surface, that encloses a volume V

<Jc_j'>|:|dA denotes a surface integral over that closed surface,

A

X is the total amount of the quantity in the volume V,

Jx is the flux of X,

tis time,

> is the net rate that X is being generated inside the volume V.

When X is being generated, it is called a "source" and it makes X more positive.
When X is being destroyed, it is called a "sink" and it makes ~ more negative.



Continuity equation

2. Is the quantity transported conserved?

YES:
dXx. :
- mass m —+ ji.dSZO
dt ¥
- charge C

=> results in flow lines and equipotential lines in a real medium

NO: dX ]
- entropy Q/T d_tl+ <ﬂ>li aAS =X
-spin S >

- photoexcited electron-hole pairs in semiconductors

=> results in "drift-diffusion equation”



The Onsager Relation

A force & that arises from one of the potentials - V@ can affect the flux j of any
extensive X ji = ji (509519"'&9“)

1. Only applies if relation between forces and fluxes is linear.

2. Includes mixed conduction effects

1.1 Temperature gradients can create concentration gradients and mass
transport: thermal diffusion and Soret effect

1.2 Electric fields can push electrically charged ions: electrophoresis

1.3 Temperature gradients can create gradients in electron concentrations
and thus voltages: thermoelectric effects

2. Covers Advection or Drag: a specie A in a mixture of A and B can be affected by
a force, where specie B is much less affected. When A-B interactions are
stronger than A-A or B-B interactions, the force acting on A results in a flux of B

2.1 Mud dragged by water (2-phased flow)
2.2 Phonon-Electron, Magnon-Electron or Phonon-Magnon Drag



Onsager is the 1stterm of a series expansion (Linear transport)

Expand this into powers of the forces (here only for the x-direction flux vector):

N ]
i(8,,8,..8,.) = ijigj +§Z Z i85 + ...
J -k

0]
Kinetic coefficients: £.i — L (generalized conductivities)

23,

gf!@;ﬁjzo

Kinetic coefficients are functions only of the potentials:

L= ‘Sji(¢09¢19“'¢i9'“)

The Onsager relation
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Linear transport: Onsaqger

Ohm's law, Fourier's law, Fick's law, ...

Dissipation: ]%f — Q = TS

Reciprocity:

proofs

1. H. Callen, chap 15 and section 16.5

2. D. Kondepuri & I. Prigogine pp 355-358
3. L. Onsager, Phys. Rev. 37 405 (1931)

4. L. Onsager, Phys. Rev. 38 2265 (1931)

Monument, NTNU, Trondheim



Fermions

.\

Bosons o




2. Delocalised electron transport

References:
J. M. Ziman, Electrons and Phonons, Oxford U. P. (1960)

A. Abrikosov, Fundamentals of the Theory of Metals, North Holland, Amsterdam (1988)

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, Oxford ,
Clarendon Press, 2" ed. (1979)

K. Behnia, Fundamentals of Thermoelectricity, Oxford U.P. (2015)

K. Behnia, On mobility of electrons in a shallow Fermi sea over a rough seafloor, in
preparation, arXiv 1507.06084 (2015)
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1.

2.

3.

Types of electron transport

Mean free path effects:

1. Diffusive regime: mean free path of the particles that carry heat, charge
of spin is smaller than sample dimensions. Microscopic transport
mechanisms governed by the Boltzmann equation.

1. The Fermi liquid: electrons like a classic electron ideal gas
2. The band structure: add periodic potential => BAND TRANSPORT

2. Hopping/tunneling regime: mean free path too short compared to
defects/traps

3. Ballistic regime: mean free path limited by sample dimensions:
Microscopic transport governed by ray equations.

Quantum corrections to transport, electron wavefunction effects:

1. Size-quantization: particle wavefunction limited by sample dimensions

2. Weak Localization: electron wavefunction interference w. impurities

3. Landau quantization: electron wavefunction <= applied magnetic field
Drag regimes Phonon-electron Drag, magnon-electron drag

14



The four length scales for electron transport

1. The spatial extent of the electron wavefunction.
e Electron (de Broglie) wavelength A
e Since transport is dominated by electrons at the Fermi level, the A
that matters is that at the Fermi wavevector value k_= %M

- . k’
* Inametal, itis related to the electron density N= %ﬂz

2. The electron mean free path {

 Mean distance between collisions
e Sometimes it is important to distinguish between collisions that transfer energy
(inelastic collisions) and those that transfer momentum only. e /

* Often measured by the mobility, but this implies knowledge of 1: H=
F

3. The effective Bohr radius ag"

, . , . &m
* Takes into account Coulombic interactions between electrons a =—-—=a,

g M

4. Thomas-Fermi screening length 't
e Takes into account electrostatic screening 23"
 3b,3and 1 arerelated by =B

r. =
TF 4kF

15



Spatial potential distribution around a charged particle: Vv

(&

The Thomas-Fermi screening lenqgth s

V(e e

4er

In a metal with electrons following a Fermi-Dirac distribution, this locally
perturbs the charge distribution.

Ziman uses the Poisson equation with this as perturbative electric
potential to obtain:

ro——2o
TF —
e’ D,
In the Fermi liquid picture: .
7ag
e =
4k,

. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, Cambridge (1960)
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Criteria

1. The Anderson (loffe-Regel) limit based on Quantum Mechanics
For electrons to develop a band structure, the electron wavevectors must
exceed the mean free path

Kl >1

1b. The minimum metallic conductivity is a macroscopic expression of Anderson
At T =0, this is the smallest non-zero value that the electrical conductivity can

have:

G>Gmin —

at e’ 1

Z h a

a = interatomic distance (A); Z = atom coordination number

min

~ 610 Q'cem™
a(A)

(octahedral bonds, z=6)

2. The Mott criterion for metal-insulator transitions based on Electrodynamics
For electrons to conduct freely in a solid, the screened wavefunctions of the
free electrons must overlap each-other.

In 3-dimensions:

(a;)3 Sz

N

- 2°3

17



The metal-insulator transition (Mott)

Consider a degenerately-doped semiconductors, with the Fermi energy near the band edge

Consider local variations of the composition of the sample

(r = spatial variable), stochastic distribution of dopants v(r)
=> |ocal variations of the bottom of the conduction band r

8 W
o \o 1
bc - My =1 meV 5-6
_________ C Island

K %

Shallow Fermisea ___~

bottom of the
conduction band

In the 1-dimensional picture and at T=0 one single island will block conduction,
unless the island is screened electrostatically, i.e. if the effective Bohr radius is larger

than the screening length around the island:

*
Band conduction if: aB > I’-|-|:

18



The Mott metal-insulator transition

1/3
ag > I Substitute the variables: |f a,n" >%(§) ~0.253 => Band conduction

1/3
If an"” < %(gj ~0.253 =>Freeze-out at low T

I

AR
Q
—
|

[ ==

=

'-

’—

19




The Mott metal-insulator

s (Y ; : "y
1B n" >Z(§j ~0.253 = [N > Nppr =0.016/(aB)3 => Band conduction transition
If N<Ngr =>Freeze-out at low temperatures
Relation to mobility p — -, => ﬂzﬁi At low temperature, it is the stochastic
i h kF distribution of impurities that scatters.
10° g Ty ™ s
AN 2 PbTe (p-doped) — r
v NN v PbTe EE-doEed) SYSTEM | €/ey | m*/m, | aj (nm) | Nrir(cm”-3)
10° 2y & | oo Si 125 | 045 15 4x10°18
= S Ge 16 | 024 3.5 3x10°17
i o i n = —— .
210'] & ®dpm® %. # Geihs 4 | SrTiog | 20000 1.8 600 7x10710
g 3 ° o % SiP E T ——— - —
N ® " PbTe 1000 | 0.07 800 3x10710
= B>5T
£10°y _ ceeed O;o\q
€ I & S %% . ]
S DR e **\*&\ B>30T Conclusions:
= e o = ope .
10 3 ;-x\x i, N 1. Better mobility from higher
. N dielectric constant
18 17 e | "1'519 "' 1"620 "1"021 2. Better mobility from lower effective
n_(Ge:Ga) n_(Si:P) mass
CARRIER DENSITY (cm®)
3. You cannot freeze-out narrow-gap

semiconductors

20



Band Transport

106 (k)
no ok

Dispersion relation: 5([2);\7 =

At thermodynamic equilibrium the particles have a statistical distribution function 0
(Bose-Einstein or Fermi-Dirac). Under the forces, the probability that a particle have a
certain position and momentum value (K, F) becomes f(k,F) # f°

The flow of particles carried by an electron of momentum and position .
is the probability to find that electron times its velocity and charge: ] Kr o vf (k,T)

The flux of particles is the integral over all momenta of all electrons JN ”ij (k r)dk

The flux of electrical current is Jc = ejN

The flux of energy is the integral over all momenta of all electrons: Jv = Iﬂ &Vt (K, T
K

The flux of heat is TQ = ] ILI¢JN TQ = jjj(‘g—ﬂ¢)Vf (IZ, F)dlz
k

21



The Boltzmann eguation

The effects of the thermodynamic forces arises from the difference between f0and f (IZ, )

Apply a “thermodynamic acceleration” a= (,5; /'m

After a time interval 6t the position and velocity of the particle have changed:
VovV+m'Fot.k >k +h'F ot
Fr—r+Vot
f(k,F,t) > f(K+A'FStTF+Vt,t+St)

Assume that under the forces, the deviation from thermal equilibrium is linear.

Differential with time: df (|Z, Fy
dt
df = f(K+4'ESt,F +Vst)— f(K,F)=r"'F - A v
ok or
For small deviations from f° .
di(k,F) - o _ at’
=h &F —=+V-—
dt ok or

22



Electric force Thermal equivalent "force"

ARD g
ot oT

TEMPEATURE

Fia. 122. The Fermi surface and distribution functions: (a) in electrical
conduction; (b) in thermal conduction.

® eoxtira electron equilibrium distribution.

(O electron deficiency --------- steady state transport dstribution.

23



The Boltzmann equation for diffuse transport

The effects of the thermodynamic forces arises from the difference between f0and f (IZ, )

The relaxation time approximation: under the effect of scattering, each the distribution
function of each particle is brought back to thermal equilibrium after one relaxation time 7

df (k,F,t) ~ f(k,F)—f°
dt T
SCATTERING
0 0 PEET: 0
go &yt L TED T
f 0& N oT T \
External Force Thermal Gradient Scattering

In diffuse transport, the applied forces are balanced by scattering at a rate 7

24



Diffuse transport of electrons

For diffuse transport only, j- for electrons only

The particle flux is the integral over all momenta of all electrons

ju = [[] v (k. Pk
k

The flux of heat is ]’Q _ jjj(g_ﬂ¢)Vf (E’ f’)dlz
k
0 0
Substitute f(k M= fO—17ve of F + iVT
o0& oT

i :jjj:/f;dk erv-v( ) E@i’—HN-V@LTOjdEVT

The average V over all directions is zero; there is no flux at thermal equilibrium
=0

m&%‘ 11, WE dk — mr(g 11, )V (5f ]dk(? mr(g u¢)\7.\7[2f deT

25




Diffuse transport

Map this onto the Onsager formalism
In _ LNN LNT S
lo LTN LTT -VI

Calculate energy and T-derivatives of distribution function, and replace integrals over
k-space by the Density of States (transformation of variables):

1
2@E)=1] 9
j(j) )D'“” V.6 (K)
End result are the TRANSPORT INTEGRALS
- of r of °
L ND(E)| —— |d& — YAAY] _
AN £ ( )[ 85) é[r(g 1)V v@(é‘)( agjdg
S of * | of
L. =— | 7VeVD (&) 6 - ——d& L = S — VeV D(S)| ——— ds
NT Té[r ( )( /%)( %j - Tjr( 14,) VoV D( )( Fye

26



Thermoelectricity

C|_ LEE LET
Q LTE LTT -VT End result are the TRANSPORT INTEGRALS

- L of ° - o of °

ad e 6f0 hae 1 25 = afo
— | 7VeV ) __ L. =—|7(& — VeVD(&) —— d&

L = irv Vo(8)(& ,u¢)( — jdg m= ir( 1) ( )[ aé;j

0.3 I I I

The integrals only matter within
a few kgT around the
electrochemical potential

10
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Ic

Electrical conductivity

Jc =oE

28



Thermopower — Seebeck coefficient

HOT COLD

29



Thermal conductivity

30



Relation between L and measured transport coefficients
J?C _ EEE EET |: E }
jQ LTE LTT -VI

1. Electrical conductivity when VT=0: |0 = EEE

2. Thermopower is defined as: ¢ =

Il
1
[Tl
~—
<
_|
~
L

Solve for j =0 => Thermopower is - _ 1 1-1
e P a = I—ET LEE

3. Thermal conductivity defined as: K= [TQ (_VT )_1}

Solve top line for j=0, derive value of e
E and substitute into bottom line => TT

We now generalize this approach to cover cases other than the diffusive transport.

31



Progression from diffusive to ballistic transport

a) K Diffusive j Diffusive:

o 7/ mfp /< Width W &
e DY W Lot
f /e \ * denotes collision that

would also happen in
bulk

Quasi - ballistic

\/ ¢ Quasi-ballistic
- Width W < mfp /<

¢ length L

. Ballistic
Ballistic Width W < length L < mfp 7

c)
v \\ Ultimately, electrons will go
through the constriction one at a

time: 1 “channel”

H. Van Houten & al., Phy5|cs and Technology of submicron structures, Springer, Berlin 1988 32



Landauer: conductance as transmission problem

Narrow channel connects two electron gas “reservoirs”, one at electrochemical

potential 24, the other at 14, +0u | =GV

G=G,Tr
. Apply a voltage V N = number of channels
| = 1..N index of each channel

Each channel has a transmission function Tr;

Here, 1 or O

fy+ eV | —> u,

2 = spin

7

2

e N

G=2—>Tr

b &b |,? i=1

Natural quantum of conductance

o
7 |

33



The Landauer-Biittiker formalism

Landauer formalism approaches Boltzmann formalism, but is more universal.
Define an electron transmission coefficient §(&)

Ji&)is the probability that a wave-packet with energy & be
transmitted across the constriction being measured.

Advantages:

1. No longer beholden to diffusive transport or to the use of a
relaxation time

2. No longer beholden to the definition of a reciprocal lattice and

dispersion relation; will work with just a density of states as function

of energy

Valid for constrictions, low-dimensional structures,...

Valid for transport across interfaces or tunneling

5. Valid for localization, hopping, disordered solids

B W

R. Landauer, IBM J. Res. Dev. 1 223 (1957) M. Buttiker, Phys. Rev. Lett. 57 1761 (1986)
34



The Landauer-Buttiker formalism

Particle flow: |N _ %J‘ f(T,g)g(g)dg
&
e
Current: . = 2EJ‘ f(T,5)5(6)d&
&

2
Internal energy flow: |U — Ejg f (Ta 5)5(6)d6
&

Heat flow:

I =%j(5—ﬂ¢)f(T,5)3(8)d8

35



The transport integrals in Landauer formalism

Apply voltage or temperature difference

The difference in distribution function

between the two reservoirs comes from

either:

1. the change in energy level due to the
voltage 4, => p; +€V

2. the change in temperature T =>T + AT

First-order expansion:

0 0
f(T,6)=1"+ evi+ATi
0& ol

0 ((9‘_
fT.6)= 10+ | ey~ 2 A7
06 KT

36



Transport inteqgrals in Landauer formalism

e Same process as with Boltzmann. | G LYV
C
* Map currents onto Onsager. ( ) =( j[ j

e Solve transport integrals. l, LT K JLAT

G- % [ o ]Z(g)dé'

0& KT

L=2e——8j( 8f0j[ _ﬂ¢j5(5)d5 @ = /AT
h e

K:zitk ) TI( a;](i}’l"’j F(&)s

The thermopower is:

6

Transport Kinetic Constants Value
coeff

Electrical e2/h 3.87 10>
Conductance
Thermopower B L/GO kB | e 86 10°
Entropy KIT GO(kB / e)2 (kB /6)2 2.87 1013
conductance

V /K

W /K2

37



Relation Landauer - Boltzmann

Sir Neville Mott defined the "Mott conductivity" o.(&) in 1930's:
Mott: “ O'(g(é? represents the conductivity the system would have if the
energy at the surface of the Fermi distribution were &; its variation with &is

important in the discussion of the thermoelectric phenomena.”

The Mott conductivity is equivalent to the transmission coefficient

0:(6)=2G,T (&)

=> Re-write the Landauer formalism for bulk conductivities

N. F. Mott and H. Jones, “The Theory of Properties of Metals and Alloys, Clarendon Press, Oxford (1936)38



The Mott relation, general case
o (6)=2G,J(&) General case

po___ 1

e((g.y¢)/kBT |

0 0.3 T T T |
0:260_[( of jf(é?)dé?
& 2

j(af O j&?(&)dg

A4

oote ()1l der
o e kg (ﬁf jﬁ(é’)dé‘
\5

K = 2GT(k j j(afoj(g_’%j J(&)dés
06 J\ kT

Valid for all Fermions, as long as we know the transmission function




Mott & Wiedemann-Franz, Fermions with degenerate stats.

Bethe-Sommerfeld expansion, 2"9 order

0.3 T T | T
O~0; (:u¢) — 26007(/%) . 0
2 = llm sskaT f _
T I(B ' 8f° e °
LETz? F (kBT)Gg(ﬂ¢) _85}&1_ |
2 2

/T z(k—Bj L 20, (1) |

e 6 0 p 41\ 4i5 g 10
¢ keT

The Mott relation: The thermopower is proportional to the energy derivative of the
transmission coefficient or Mott conductivity

L, 7 (kg 1 do. (&)
-—J =—| = |(kyT ) ——=—=
“ o (#) 3 (e ( ° )O' dé

Hy

The Wiedemann-Franz-Lorenz relation: the electronic thermal conductivity is proportional
to the electrical conductivity
The proportionality constant is the Lorenz number L,

2 2
xk=L,oT ; L, =%(k—8j =2.45x10"°[V’K?]
€

40



Add

an external magnetic field

jc EEE EET } E :| The transport integrals are solved as
= || - before (see specialized course)
lo TE TT VI
F =eE+VxH;]. =¢j,
2 E, H,
Example: for the case y j
X
X
X
=> Magnetoconductivity | | => Hall => MagnetoSeebeck => Nernst
. — \ / 2] /
JCx I-EExx = O-xx I—EExy — ny I—ETxx I—ETxy Ex
JCy I—Eny = ny I‘EEyy = G I—ETyx I—ETyy Ey E
JQX I—TExx TExy TTxx TTxy -V xT VT
Joy LTny TEyy / TTy/ TTyy | -V yT

=> Magnetothermal conductivity => Magghi-Righi-Leduc

41



Hole

Hall effect

42



The Nernst effect

HOT _ COLD
Hole

43



Magghi-Righi-Leduc effect

HOT - COLD

44



Measurements

45



Multicarrier transport

1. Several different pockets to the Fermi surface
e Sij, Ge, ...

2. Electrons and holes:
e Semimetals, Weyl semimetals, Dirac systems
 Semiconductors in the intrinsic regime

3. Spin polarized electrons
e Spin-mixing models

46



Multicarrier transport

SIMPLEST SOLUTION:
e Assume the different particles do not interact: each has it's own
L-tensor
e Add the fluxes
e Two cases:
e Particles have different charge: careful with polarity
e Particles have different spin: spin currents vs charge currents
e Example for electrons and holes:

JC = JCe T JCh . LEEe + LEEh LETe + LETh E
B JQ = JQe T JQh | B LTEe + LTEh YTe + TTh | __VT _

Algebra becomes messy very quickly



electrical
conductivity

Hall constant

Seebeck

Nernst

Thermal
conductivity

Magghi-Righi-Leduc
(i.e. Thermal Hall)

At low field

ﬂl_l_ﬂﬂ

Rlﬂ'lz + Rzﬂgz
(07 + 02)®

61'1"1 —+ 92"2

oy + 0O
L E—

Q101(01 4 92) + Qu93(0, + 95) +{(B1 — O3)oyoa(Ryy — @

(o + as)

1“2(91 - 92)2

oy + o2

KL + Ky + Ko T-

S + § &

2“1"2(“1:92)(91_ 92) (Ql‘"Qz)"‘ Ulzﬂzz(Rl'F R:)@
\ (o7 + a3)*

Ambipolar terms usually dominate in semimetals
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Electrical conductivity

Resistivity = EVEN function of polarity
+ | —

Hole

Electron

49



Hall effect

Hall Effect = ODD function of polarity
+ | —

Hole

H/’

Electron

Hr




Thermopower — Seebeck coefficient

Seebeck Effect = ODD function of polarity

HOT COLD
Hole -
- +

HOT COLD

+ —

51



The Nernst effect

Nernst Effect = EVEN function of polarity

HOT — COLD

Electron

52



Thermal conductivity

Thermal Conductivity =
EVEN function of polarity

HOT COLD

HOl;-\
/
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Magghi-Righi-Leduc effect

Magghi-Righi-Leoluc Effect =
ODD function of polarity

HOT _ COLD
Hole

=7

HOT _ COLD
Electron

=

54



Advertisement for CEM research on Weyl semimetals

1. Solve both the electron and the hole part of the Dirac dispersion together
(Tim McCormick, N. Trivedi) =>

2. Nernst effect is entirely ambipolar (Watzman & McCormick et al., arXiv 2017)

3. Thermal conductivity in-plane (no arcs) is entirely ambipolar
(U. Stockert et al, Watzman, Heremans, arXiv 2017, J. Phys. C. submitted)

4. Thermal conductivity along c-axis (i.e. perpendicular to the arcs) has conveyer-
belt transport (McCormick , Watzman & al., arXiv 2017) => strong
magnetothermal conductivity

Normally K= _TQ (—VT)_I_TCO |:TC:|:[EEE EET“: E :|
) lo re Lo JL-VT

With arcs g = TQ (—VT )_1 ]

1j. 20
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Spins on conduction electrons: Stoner model

Two bands, spin-up and spin-down

Carrier concentrations N;,N,
Electrochemical potentials #4r»#y
Density of states 2,9,

Carrier mobilities 4, 4

Current carried Jers Joy

Spin carried Jsts sy

" k> Partial electrical conductivity 03,0,
F

Partial thermopower a.,«;
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Spin and charge fluxes
Careful: the charge is conserved, but the spin polarization NOT ALWAYS! (LATER)

Everywhere in an FM, but only microscopically at any given point in an NM:

Charge flux: Jo = Jer ey
Spin flux: Js = Jsr = Jsu = E( Jer — Jci)
. . . KT /. .
Heat flux: Jo = Jor T oy :BT( jor * et )
j G, 07|V
Onsager, applied electric field only: et 7T "i
JC~L 0 Gi V/qu

57



Onsager: spin dependent conductance

Transformation of variables

Electrical transport only

Je=Jat )y Charge current
Js = g( Jor — Jic) Spin current

104+ u)

Vu electrochemical potential
) OX P
T \’
0w —my)
V,Us - Ox spin accumulation potential
G= GT T G¢ charge conductivity
Gs =G, -G, spin mixing conductivity

o _{G GS} Vi,

. = 1
Js % G, G Evﬂs

1. Spins also move under the magnetic force F = V(M -I§)

2. Temperature gradients

3. This is only local and microscopic, and subject to finite spin lifetime
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Anomalous Hall effect and Spin Hall Effect
1T
Hz(® ljDHE Jc_xt %T jcyt: jsyt

e /—\N\N
-

1 icxd TjANE,jSHE
e
l JOHE
i jeydisyd Hall effect
measurements
OHE AHE SHE on Ni
E ¢ 300°C
- 355° ¢

it C

Anomalous o g
= , 184° C
Hall Effect \E\\ ; —385°C
395°C

(AHE) 5 § 10 100° C
% e a0°C
Ordinary Hall \_ﬁ?\g\ // - 23°C
Effect (OHE) i ,
£ '." : o o."190°C
ﬁ - -:;“ : _o_u-—-~—-—-—""—"“"'_”54ﬁ“ﬁ
3 % 5 0 5 20

Magnetic Induction B  kilogauss

Nagaosa,& al. Rev. Mod. Phys. 82, 1539 2010 59



When does this apply?

1. Ferromagnetic metals: spin-up and spin down bands are different
=> Spin polarization is always present
=> AHE and SHE are always present.

AHE IS NOT THE SAME AS AN ORDINARY HALL EFFECT WITH THE INTERNAL
MAGNEITZATION INDUCTION (i.e. B=M+p,,H)

2. Normal metals with low spin-orbit interactions
=> Spin flux injection results in spin polarization for a finite spin
lifetime.

3. Normal metals with strong spin-orbit interactions
=> Charge current injection results in spin currents (spin-Hall effect)
=> Spin current injection results in charge currents (inverse spin-
Hall effect)
=> Both last only for a finite spin lifetime.
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(Inverse) Spin Hall Effect (intrinsic only)

in- Js EisHE in-

Spin-Hall J - S -_I_nverse spin-Hall
8 | z y
: ¢ 7 -0 V
e e e
% X
e Is T& /7

‘ £ Esye : If one spin subband is preferentially

occupied by spin injection, asymmetric

spin-flip scattering results in a current in

the x direction. The rate of spinflip

-~ scattering depends on the value of the
initial and final k-vectors. There are four
distinct spin-flip scattering events

\ / possible.
£l = _ HE-
N 2 - Esie = Digne (Js X0)
k. K,

0k, _ 2e
. = ey —1. X 0O
Sinova et al., Rev. Mod. Phys. 87 1213 2015 Je SHop Js 61



There Is a connection between the two spin channels

HYT T jcv‘l‘; jsvT

Rowe l Jome }
jIN _’,_,/ Spin-flip
—lp ! Spin-orbit
effects Ru

Spin-Coulomb
drag

H‘r’l ljcyi; jsw

OHE AHE, SHE, ISHE

H[]I'IE l i'IJHE }

Spin is not conserved => the two spin channels recombine with a spin lifetime 7

=> DRIFT-DIFFUSION EQUATION
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Drift-diffusion

Generation rate equilibrium population
&/ e
on % n(t)—n, -
1. Continuity equation — =6, ———+ V., S~
ot Ts flux
lifetime
conductivity
- N
2.0nsager J, =0 +D,Vn
force/ TDiffusion constant
mobility
. .. _ . L
3. Einstein (ideal gas): D, = kBTlun,mob

Notes
1. Never mix lifetime (1) and scattering time (in mobility)
2. The diffusion constant is also a transport property, for classical parabolic bands:

Fl/z(lefI-)\ Electrochemical potential
D, = 2kBT/un,mob Eju vis-a-vis band edge
-1/2 (kBT)
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Drift-diffusion

e Put this all together => one second-order differential equation (1-D).

e Assume STEADY STATE
e Assume all generation to take place at one surface

Spin pumping i
localized to x=0 i

0 X

X
n(x) =n(0)exp(———)
Asy \ n
Spin Diffusion Length

Asg = \// D,7s .

/ISd
, , Spin
Electron diffusion lifetime Hs
mobility and thus X

constant, contains

—

scattering time Dn = kBT 77—
Spin accumulation potential also decays
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Example: Electrical spin injection across FM/NM metal
Interfaces

w+eVo

Johnson & Silsbee
Phys. Rev. B
1980's
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Spin-Hall angle and spin diffusion length

are usually counter-indicated

TABLE I. Experimental spin Hall angles and effective spin-orbit-coupling parameters, k+4,_,. The values marked
measured but taken from the literature. The Fermi momenta are taken to be kg = 1.75 x 10® cm™! (Al), 1.21 x 1l
10 em~! (Nb), and 1.0 x 10* ecm~! (Mo, Pd, Ta, Pt). Here, ksl = (37/2)6/ky(h/e*). References: (1) Valenzuela and 1
(2) Seki et al. (2008); (3) Mosendz et al. (2010b); (4) Niimi ef al. (2011); (5) Morota et al. (2009); (6) Morota et al. (2011
(2010); (8) Kimura et al (2007); (9) Vila, Kimura, and Otani (2007); (10) Ando er al (2008); and (11) Liu er al. (2

Asq (nm) kpl kpde—so agy (%) |y /asu

Al (42 K) 455+ 15 73 0.0079 0.032 £+ 0.006 0.67
Al (42 K) 705 + 30 118 0.0083 0.016 + 0.004 0.88
Au (295 K) 86 + 10 371 0.3 11.3 0.014
Au (295 K) 35 + 3 253 0.52 0.35+0.03 1.17
Culr (10 K) 5-30 2.1+06

Mo (10 K) 10 36.8 0.32 —0.20 8.7
Mo (10 K) 10 8.11 0.07 —0.075 23
Mo (10 K) 8.6+ 13 34.1 0.34 —(0.8 £0.18) 25
Mo (295 K) 35 + 3 56.7 0.14 —(0.05 +0.01) 9.9
Nb (10 K) 59403 11.3 0.14 —(0.87 £0.20) 29
Pd (295 K) 9 24.0 0.23 1.0 1.9
Pd (10 K) 13+2 26.8 0.18 1.2+ 04 1.1
Pd (295 K) 15 +4° 48.6 0.28 0.64+0.10 1.8
Pt (295 K) 71.9 0.74 0.37 5.1
Pt (5 K) 14 97.3 0.61 0.44 2.9
Pt (295 K) 10 67.6 0.58 0.9 1.9
Pt (10 K) 11+2 98.5 0.77 2.1+05 0.74
Pt (295 K) 7 71.8 0.97 8.0 0.31
Pt (295 K) 3-6 60.8 0.88-1.75 7655 0.57
Pt (295 K) 10 + 2* 29.2 0.25 1.34+0.2 1.31
Ta (10 K) 2.74+04 3.90 0.17 —(0.37+£0.11) 24

Sinova et al., Rev. Mod. Phys. 87 1213 2015



Spin-dependent Seebeck

' B 2l T

J.CT ©1 O Ler 0 Vg Partial Seebecks
Jey B 0 G¢ 0 LETi V,U; Lers
- _ a —

Jot Les 0 Ly 0 Al ! G,

jQL 0 Le, 0 Ly 1 VT

:IZETGT —I—I‘J:fl(;l
Gy + G,

Total Thermopower:  «

=> Thermally-driven accumulation due to Seebeck effect carries with it a spin accumulation:
=> Spin-dependent Seebeck

=> Onsager reciprocal: Spin-dependent Peltier

This has all been observed by Bart van Wees' group.
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Spins on delocalized conduction electrons:

Part 3: Spins on localized electrons in FM metals

OR insulators

MAGNON TRANSPORT

Here: only for ferromagnets
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Magnons, Heisenberg ferromagnet

N
Spins = classical vectors of magnitude S Energy: U =-2J ZSp *Spu
p=1
exchange
energy

The ferromagnetic ground state has all spins parallel.

] I I [ ] [ hS, = angular momentum of spin at site p
e Ground state energy: U,=-2 NJS*

Excited states: all atoms share a little bit
of thermally-driven spin reversal
=> spins precess

@

I (wt—kx)

Magnons = propagating waves of the precession @ = 909

Kittel 69



Ground state => excited state

IEELRARRAREL!

magnetization:  E—————

Slide adapted from Burkard Hillebrands, U. Kaiserslautern
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Magnon wave equation

I (wt—kX)
g,e
Magnons have dispersion relations @(K) just like phonons

0 =
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Magnon dispersion relation

For a 1-dimensional chain:

ho=4JS(1—coska)

At low K-values near zone center:

ho = (2JS)a’k’ = Dk’a’

D is called the magnon "stiffness",
closely related to J and to the
Curie temperature T

Parabolic dispersion like electrons

hw/48J

2
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Add an external field or an anisotropy field

C. Kittel, Quantum theory of solids, 2t. Ed., John Wiley, 1987

Hamiltonian considering nearest-neighbors, and Zeeman splitting

Zeeman energy term

5=-3¥S,S, .. —2(”;9%225&2
p.a Xp

P

Index of the atom

Intensity of static magnetic field along z

Vector connecting atom p to it’s neighbor

Zeeman term gives a gapft k=0.

ha, = ugH, +2JSa’k’

The anisotropy field gives the same effect as the external magnetic field

/3



Examples

Dispersion itself very isotropic\

.035 [~ ' T ]
Fe (4% Si)
.030 - _
bcc Fe
.025 |- _
s+ CREATION
o+ ANNIHILATION
< 020~ o« PURE Fe —
2 2
os - hao = Dk -
/
’
.0l0 ’ -
r -
005 1G. Shirane et al, Phys. _
Rev. Lett 15 146 (1965)
a L 1 |
0 050 100 .150 .200
qa/l2w
FI1G. 2. Magnon dispersion relation for iron, con-

taining 4% Si. The arrows call attention to the two
points measured for pure iron. The dashed curve is
the function fiw = 2862, while the smooth curve is a
least-squares fit through the experimental points as
explained in the text.

Anisotropy field

Dipole-coupled m

hao, = u,gH, +2JSa’k?

1 [}
Sinclair & Brockhouse,
. - - P W aloTe) j
0.05 \,\ f111] Bhys. Rev| 12016388 -+ — oLt
o Tyvami -
Lo L:A JL':! ’ ‘ oy a ') !J"
a [100] (1960 /
(100 /
=
Fi
#
frr | olaYalVd Vi
ICC UCOAFE, 10101 N F Ann
LL L UgolMTg, QUUIN A
0.04}- / —
i
;r’
3
E :_g{g___1
. 7
? 0.03 s /.
03} ESEES-ENE n
@ i
=4 Vi
g o i
% ;
= e
il g
7
f‘r"
0-02 - . ’Jg’ -
— St
O
i
7
/
7
i
7,
’Ji)
0.0l o ;ga—e%—m; -1
J"t
& ‘..Af'ee» -
P
=!rg?;
A 4
e B Ang-qﬁg*.-&-—*
ol
""" 5 0.1 0.2
— \ kﬂ.’ 2m—=
A Y
agnons

Exchange-coupled magnons
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Magnon dispersions, multi-atom ferromagnets

0.10 1 I i T * l ! L s
(001]

- Magnetite

0.08
%

Eax = 0.075 meV

3 0.06, =Kkg x 870 K
g Directly related
& _| tothe Curie
& 0.04 temperature
0.02 |— N
Brockhouse & Watanabe,
- ‘,H’% IAEA symp., Chalk River, Ont. (1962)
+\+/;:H- [ l l ! 1 I ] 1
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Density of states (3-dimensional) D(w) (ferromagnets)

Magnons have only a single polarization for each value of k
Number of modes of wavevector less than k in unit volume: (1/27[)3 (47zk3 /3)

Number of magnons of frequency between ® and w+d® in unit volume of crystal

3
D)o =| | 4 4o
2 dw
@ ll’lBgHZ ‘/a)
7
l ha, = pygH, +2JSa’k>
@ dw 2JSa’
—~ -9
e
0 if @< u,gH, /1
@(a)) _ | A 3/2 |
= (2J8a2j Jo ifo> UzQH, [ 7

/6



Temperature-dependence of magnetization

-1
ha))_l]
KgT
Number density of magnons at T (H=0) : "
% C(3) [ kgT
n(T) = [D(@) fy(@)do =
0

Magnons follow Bose-Einstein statistics f, = (exp(

87>\ 2JSa’

Loss of magnetization with increasing temperature:

AMs(T) _ n(T)

T T T M. (T =0) NS
- T | AM (M) 0.0578(k,TY"”
Sos \ M (T=0) SQ (23S
g \ The "Bloch T32 [aw"
x 04 z
\@ Number of atoms per unit volume=Q/a>,
o e i Q=1 (sc), 2 (bcc), 3 (fcc)
0

¢ e % 1 Experimentally verified, T < T/ (5 to 10)

Felix Bloch, Z. Physik 61 206 (1931)
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Magnon specific heat (ferromagnets)

U()= Tha)@(a)) f,(w)dw

3/2
C(T)E_du :0.113( kBsz
dT 2JSa

Add a magnetic field, and the integral doesn't start at zero but at —g 15 B

CG)EEE:ﬁJL{:%Tz
dT 2JSa

32
j f(/uBgHz/kBT)

019 -

X 0.185 =

2 o718 E

2 0.175F =

O — -

2 0.17 | | | —

S Phonons + magnons

L et TRTARIRD T INGSTTI

3

& Magnons
Phonons only

20000 40000 60000 80000
H (Oe) S.R. Boona & J. P. H, Phys. Rev. B 90, 064421 (2014). 78



Magnon Specific Heat

1000

-
-
S

-
S

X - ]
2 - .
- o A
R B - 3 -
S 1F o .
O = 52 -
O L E :
> .18 S 1 :
- 0-TE 0kOe 3 -
% - DQO c;
2007 pri 19
= - Difference -

0.001 =;' | L1 1 |||| | | L1 1 |||| | 1

1 10 100
T (K)

S. R. Boona & J. P. H, Phys. Rev. B 90, 064421 (2014).
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Transport: Onsager for Magnons

Linear response theory: a number of very new concepts in transport:

Magnonic
Magnon

Magnon spin flux Magnon thermopower
electrochemical

conductivity || conductivity
\ \ g / potential gradient

JS Os g _vlum
w7, K, )\ =VI

J m m
/ AN
Magnonic Magnon

Magnon heat flux Peltier Thermal
coefficient conductivity

Flebus, Bender, Tserkovnyak and Duine, arXiv 1510.05316v2, 30 Oct 2015
Review: Vandaele, Watzman, Flebus, Prakash, Zheng, Heremans..,
Materials Today Physics, Accepted (2017)
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Magnon chemical potential

Active magnon pumping » I

X 0 X
n(x) =n(0)exp(— 7)

Spin Diffusion Length

As =+ DnTs
ccr. - Spin
Magnon d|ffu5|(?n lifetime L
constant, contains
mobility and thus / X

scattering time Dm — kBT 7

Far from the pumping:

In the region where there is pumping, the excess Thermodynamic equilibrium
magnons are represented in the distribution function => u =0 |
-1 ho
ha — f =|ex —1
f = (CXp( Hin ) _ 1} 0 ( p( kBT ) ]
KeT



#s9H, <K, -9K] Magnonic thermal conductivity

h H=7T
Like for specific heat, magnetic fields can freeze out magnons,
~10%V/Tor13K/T
AV
@  The field direction vis-a-vis the heat flux does not matter
Alignment of local moments always // field.
Thermal conductivity field // heat Thermal conductivity field 1 heat
49 48 I | I | I | T

~ T ~ VYiG

< 48 % 47 T=8K

& _f & [ HLVT

s 47 S 46 }

£ 46 _ S 45 —E

» | ‘ | 44 ——+—

§ ‘ B T=2K Kuaenon T Keronond § 4 __ r=2K

g 4p . IS <
\E_, - Kpronon . < o een

X ~ 35

F 361 L N

R LA LR F, 5
|

-80000 -40000 0 40000 80000

3 1 1 1 1
H (Oe) -80000 -40000 0 40000 80000

H (Oe)

S. R. Boona & J. P. H, Phys. Rev. B 90, 064421 (2014).



Maagnonic thermal conductivity

I I T TTTl I 1 LI III I 1
1008 YIG ]
C M= 0kOe HI VT
g
10 —
S C ]
. n H = 70 kOe .
y S Difference ] Magnon energy mean free path {
[ T T T T IIII T T I TTTTT T I_
1t 4 10’y & 3o, -
C Lo vl ool L1 E / 8 E
B $ -
! 1OT(K) 100 £ 1x10°E Magnons 8 E
S B $ ]
= - .
. . . L 1x10°F =
Treating magnons like an ideal gas => o S o ;
1 o , - %, N
KpHonon = ?CPHONON VPHONONfPHONON § x10° g E
! S - Phonons o .
Kvagnon = 3 CMAGNON VvacnoN l MAGNON 1x10°E .
- o
1X10'9 1 1 111 IIII 1 1 111 III| 1 1
1 10 100

3 s.R.Boona & J. P. H, Phys. Rev. B 90, 064421 (2014). T (K)



Magnonic thermal conductivity gives spin flux

Magnons are the reason magnets loose strength with increasing temperature:

A
MS
Saturation magnetization
(N x Bohr Magnetons per atom)

Decrease in
Magnetization:
Density of
magnons

Te
Curie temperature

> T(K)

Magnons in temperature gradients: .

Gradient: VT =>Vn_& VM

Flux: Jom == Jmagnon density & JpacNETIZATION

: no. h
Magnonic heat fluxis a spin flux=> Js ® —— Jo.m ® —KmVT

KgT KgT

4 _ .
Vandaele & al. Materials Today Physics, Accepted (2017)



Magnonic thermopower
M, ]

Increase in
density of
magnons

Te

In the presence of spin injection | . Curie temperature

=> Gradient: VT =>Vn_ & Vu

The magnonic thermopower is defined by considering | . S
JQ m

under open-circuit conditions, i.e., solving for js=0

\%
o = — ﬂm:—i

! VT o

5 : .
Vandaele & al. Materials Today Physics, Accepted (2017)

4

K

> T(K)

(%)




Microscopic solution for magnonic thermopower

Treat magnons as a dilute "ideal" gas (i.e. no interactions):

Internal energy gradient VU = C VT +n Vyu exertsa force F that
drives the magnon flow.

The force is the gradient in pressure, which is 2/3 VU

Newton’s second law to an element of the magnon gas of volume $V

Magnon mass N q / Magnon velocity
\Y;
n.MoV—==05F
dt
dv 2 2
M lerati m C VI -—V
dgNnon acceieration dt 3 nm M M 2

No current => net acceleration is zero =>
Vu C,

am = — =
VT n,

Vandaele & al. Materials Today Physics, Accepted (2017)



Conclusion

Fermions

Thermopower is the energy-
derivative of the transmission
function (or energy-dependent
electrical conductivity)

‘dGT/L(Ey ‘
72.2 kB . dE c

o =
e 3 e B

=He

oy (1)

The more electrons there are the lower
the thermopower

Otoc—ln(ne)

Bosons

Thermopower is the specific heat per
particle

Thermopower less dependent on density

=> it is better to use a temperature gradient to drive magnons and
make magnons drive electrons: ADVECTIVE TRANSPORT



Advective transport: spin-Seebeck effect & magnon drag

Spin Seebeck Effect
Ferromagnetic Insulator Electrons Metal

Phonon Magnon

Magnon-Drag Effect
Ferromagnetic Metal

M

o0 0U P

Phonon Magnon

->vl

Boona...JPH, APL Materials 4, 104502 (2016) 88




Spares



The potentials are intensive

() 4 (3
oU X, ),
Are intensive because

T(/ixsystem){(as(;(jﬁ)xi)) ] {(/ws/%tx‘)j } Kas(gu )j } =T (system)

0S(U.2X))  _ o[ A0SMU.X)) | [ A0S, X
oUAX) ), X)) A0(X.)

Potentials:

j#i

& (A x system) =T [ ‘)j = ¢ (System)

Potentials pair up with their extensives:

Pressure -<& volume Stress < strain
Electrochemical potential<> Electrical charge and with Number of Particles
Magnetic field < magnetization

Mathematically, temperature is a potential, even though entropy is different from
the other extensives (equation of state): Temperature<> entropy
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The forces

df (k,F) .., - of® _ of°
- ———=h F —=+V-—
The fluxes are driven by dt oK oF
The direct forces, PO 0 0
e.g. electric field ak.n —h'g L — h—lj.ia_{i — Ve
F _eE ot | once ok 06 ok
The temperature Lo . .
gradient working on of (k,F) o of of
— —_— =V - —— =VV]T —
the statistical ot or oT
TEMPEATURE

distribution function

So temperature gradients work :
e Thermodynamically like all other forms of potential gradients.
* Microscopically they work via the statistical distribution function (valid for all

distribution functions).
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Distribution functions

Electrons follow Fermi-Dirac distribution function f9 — - !
_IL[¢
efe’ +1
Phonons and magnons follow Bose-Einstein distribution function ¢ — - !
,‘L[¢
of’  &-u, of° e’ ~1
For both cases, we have: “r ¢

oT T o8
M £l
jQ ETN ETT \al
" (a0~ 3
L = mrw (—gjdk Lo = | _k[ [z(6- y¢)\7-\7(—%jdk
fO) - . 0y
o= M9 (6 ) S =L v
k

Note that this obeys the reciprocity relation
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Density of states to solve the k-space volume integrals

1. Know the dispersion relations 5([2) jN _ LNN LNT F
2. Derive the group velocities y = h‘lvﬁg(ﬁ) TQ ETN ETT VT

3. Substitute this into the transport integrals

4. Express the proper force that is applied to the particle, and the proper flux to be measured

5. Transform the integrals over k-space into integrals over energy. To do that, use the
concept of density of states DOS 2.

1 S = surface of equal energy &
D(&) = sJ("(!) 9 272')DIM e 5(k) g = degeneracy of the state
of ° - of °
= | VVD(6)| ——— |d& = VeV ———
5 ( )( af;j L. J;T(é‘ 12,V v@(é‘)( ag]dg
- | of * o of
. =—?£TV-V@(5)(5-y¢)(—£jdé’ L :——jr(g 14,) v-v@(é‘)[—a—gjdé'

This will be done for electrons, phonons and magnons on a case by case basis 93



Conductance quantization: the other extreme

Gate voltage changes the width of the constriction => the number of channels N

Gy, =lim ,,(0,p)=1lm_ __(G,40)=2G,

10+t "777\}@’3“‘%?"(2 Dr_n__ . :
';Gate// N
8_____—// “lreq =
N OF
8 = G = 2NG,
5 4: N
) /

F_ —
O—5——78 =16 -14 -12 -1
gate voltage (V)

FiG. 44. Point contact conductance as a function of gate voltage at 0.6 K, demonstrating the
fuctance quantization in units of 2¢%/h. The data are obtained from the two-terminal
fitance after subtraction of a background resistance. The constriction width increases with
asing voltage on the gate (see inset). Taken from B. J. van Wees et al., Phys. Rev. Lett. 60, 848

he
N
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Metals and degenerately-doped semiconductors

Bethe-Sommerfeld expansion, 2" order

L . . :
o= J.(——]G (&)d& a:f o U hrn%>>kBT f°
_ o5 | ]
:(_Bjj “¢ o (§)dé |
e )2\ 0& “
0 B 0 2 4i5 8 10
KI/T = (—B) (8f j( ﬂ‘”j o.(&)dé ad kgT
e 06
X=(6—u,)/ (KeT)s = p1, / (KgT)
See appendix 0 0 2
L= | e odx~ F(0)+ 70 0]
i OX dx )
Notice that all the = *=0
integrands have the form of: F =X'o, (k;TX) =0

Ly =0 (05 L, =7/ (207,(0) + X5”(0))

L, =’%(2ag<0>+4/xwﬁ) v WO))
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6.4 Physical meaning

2 (kB )(kBT ) dIn(o,.(&))
3 e dé

o =

Hy
kB
e

2 2
x=LoT ; |_0=7; ( j — 2.45x 10 [V2K?]

o (§)=2G,J (&)

The Mott formalism for thermopower and the Wiedemann-Franz law have the
same advantages as the Landauer formalism:

1.
2.

w

No longer beholden to diffusive transport or to the use of a relaxation time
No longer beholden to the definition of a reciprocal lattice and dispersion
relation; will work with just a density of states as function of energy

Valid for constrictions, low-dimensional structures,...

Valid for localization, hopping, disordered solids
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Fig. 1
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Fig. 2
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Fig. 4
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Thermopower: Fermions, DOS uniform

Cold side, distribution function

Hot side side, distribution function

C(; A
]
“\ JELECTRON
\‘g JHoLe
(& (&)
» »
- _ *(k dl &
JeecRon=JHoLe =2 ( 5 )(kBT) o () _
3 e dé u

10:



Conduction band

Cold side, electron concentration

Hot side side, electron concentration

& 1 268 & 1 2608
D&) DS)
JELECTRON
JhoLE
[ o ASH(&7 206 A&
- - 2
JeecRon > JHote =2 (kB j(kBT ) dIn(o,(¢)) <0
3\ e dé u

10:



Valence band

Cold side, electron concentration Hot side side, electron concentration
A A
& &
D6 |
o JELECTRON
/ JHoLE X
DES(&)
DE) DER(EN, D1E) DEF(8) ‘)
2
- : K dl &
Jeecrron<Jnoe  a =2 ( 5 )(kBT) o ()
3 e dé u

10:



Limitations of band transport

Atomic potentials can be not weak at all, but very strong:

1. Bands become flat (little energy change per momentum change)

2. Impurities can have much deeper potentials that the atoms of the
host solid and electrons can get trapped over them.

Potentials can be non-periodic in disordered solids and in liquids => no
Bragg condition, no band structure at all, only the notion of density of
available energy states can be used

Electron wavefunctions can be affected by things other than the
periodic electrostatic potentials of the atoms:

1. External magnetic fields => Landau levels
Spin-orbit interactions => Dirac bands

Finite size effects => Quantum confinement
Interference effects => Weak Localization

Strong electron interactions

1. electron —electron => Correlation effects

2. electron — impurity => Resonant levels

3. electron — magnetic impurity => Kondo effect
4. electron — phonon => Polarons
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The Anderson (loffe-Reqgel) limit

Difference between insulator and metal in any arbitrary solid ?

Wave origin of the electrons can be propagating wave or standing wave

Delocalized states conduct

Localized states don’t conduct W\/W

The states’ wavefunction at the Fermi energy
must extend beyond one mean free path

€<L

F

If ke # >1 => band conduction

If ke # <1 => localization

Rigorous demonstration in N. F. Mott & E. A. Davis “electronic Processes in Non-crystalline Materials”

P. W. Anderson, Phys. Rev. 109 1492 (1958); A.F. loffe and A.R. Regel, Prog. Semicond. 4, 237 (1960). 10!



Minimum metallic conductivity (consequence of Anderson criterion)
A. This solid is fully periodic: Bands are fully developed

A O IO Y O O & s S

) D)

& /

Bands develop edges VO{

/ - | &)

One deep potential can be so deep (V,) that the Anderson criterion is locally not satisfied:
the level will pin the electron => there exists a critical pinning energy &

N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials, Oxford (1979) 10¢



Minimum metallic conductivity

There is a critical value of & so that, at T=0 D) States conduct
o=0 if& <8, Don'
conduct c
c#0 11&> 6,

Also called the mobility edge

At finite temperature T # 0

if 14, < 5. => hopping conduction

if 14,> 5. => band conduction

Calculate the critical value of & and the corresponding critical conductivity

At finite temperature T # 0

mn T, hog if o < 6., = hopping conduction

if o > o,., = band conduction

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, Oxford (1979), sec 2.6 10



Natural units for electrical conductance

The Fermi liquid, spherical Fermi surface

hk:2 1 OE hk 2hk
Energy dispersion: EF = ': Ve = — F— F = a
2m h ok m m
=> Drude ne’/ e’ | n/
. o = =2
conductivity: mv . h ke
3-dimensions 2-dimensions 1-dimension
Number of k-points per volume V /8x V /4rx° V /27
Volume of Fermi surface 47k3 /3 7k’ 2k,
Concentration of electrons (x2) | n,, =k /37’ n,, =k /27 np=2k. /7
Drude conductivity: e2) 2 o2 o?
G3D Z(Tjgkéf O,p Z(TJka O p Z(Tjél-f
units QO 'm™! Q' QO 'm
2
All are expressed in terms of G, = % ~3874%x10°0Q 'm™

Fundamental unit for electrical conductance

10




Dimensionality dependence

The criteria are always less stringent in 1- Dimension
3-D, most stringentin1-D e T TMAX BT >

In 1-dimension: particle at any energy
below the highest peak fails =>

conduction is interrupted /L /
\ r

In 2-dimension: particle at any
energy below the highest peak
can find a way around. Only
those below the potential of a
saddle point fail

2- Dimension

g2 > Vpags Pass ¥ | In 3-dimension: better yet

M3 < Vpass fail

10!



Specific heat by magnons (heavy RE elements)

O. V. Lounasmaa & L. J. Sundstrom, Phys. Rev. 150 399 (1966)

TaBLE VII. Percentage contributions of Cr, Cg, Cu, and
Cn in the total C,.

Sample T(°K) Cr(%) Cr(%) Cum(%) Cn(%) Cp(m]J/mole °K)b

Gds 5 20 31 39 .. 180
10 59 18 23 - 625
20 77 5 18 .o 4470
Tha 5 33 51 7 9 110
10 64 21 15 <1 590
20 73 5 22 e 4690
Dy» S 23 35 41 <1 160
10 60 18 22 s 630
20 61 4 35 R 5640
Ho 5 7 11 49 33 530
10 14 4 80 2 2725
20 36 2 62 oo 9550
Tm 5 9 14 77 cee 400
10 19 6 75 v 1990

20 32 2 66 IR 10600




