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Abstract

Twisted bilayer graphene is a fascinating material with much interest in many fields, though 
it especially gained notoriety after reported superconducting behavior. This led to the obser-
vance of an interaction potential that appears to have a small ”shoulder” in its shape. In this 
report, I explore the possibility of the formation of stripe and bubble electron phases based on 
both a simplified toy model of the shoulder potential, and the aggregation of the real poten-
tial and an external potential field. This was accomplished through the use of a Monte Carlo 
simulation written in Python, facilitated by Jupyter notebooks. All provided analysis is on a 
primarily qualitative basis.

I Introduction

Twisted Bi-layer Graphene

Graphene has been of some interest to physicist and materials scientists for some time. More
recently, twisted bi-layer graphene - a configuration where the upper of two layers of graphene
is twisted slightly - has gained special interest due to its flat band structure and demonstration of
superconductivity [1]. This excitement led to further research, and the derivation of the Law of
Interaction for gapped graphene by Kotov et al. in 2008. This interaction potential is plotted in
Figure 5.

Electron Stripes and Bubbles

Typically, when modelling the Law of Interaction for electrons the plot looks a continuous downward-
sloping line, similar to Figure 1a. However, in the presence of a magnetic field, this interaction
plot develops a slight ”shoulder” to it. That is to say, for some range of distances, r, there is no
increase or decrease in the interaction energy. The presence of this plateau enables the formation
of stripes and bubbles, described by Fogler et al. in 1996 [2]. This shoulder is purely an artifact of
the magnetic field, as it turns the wave functions into rings, which have a maximum partial over-
lap until they are completely overlapped. A simplified example of this interaction can be seen in
Figure 3



Motivation and goals

The appearance of a small shoulder-like anomaly in the plot of the interaction potential for gapped
graphene, first derived by Kotov et al. in 2008, gave rise to the suspicion that gapped graphene
could similarly produce these stripe and bubble formations [3]. This project was undertaken in
an attempt to explore whether or not this would in fact be possible with just the gapped graphene
potential, and also in the presence of an external potential caused by the substrate. This explo-
ration was undertaken by building a Monte Carlo simulation of electrons on a 2D plane in Jupyter
Notebooks, and exploring both the simplified interaction models and the gapped graphene Law of
Interaction

II Method

In order to explore the possibility of differing electron morphologies, Jupyter notebooks was used
to construct a python program which could simulate a random assortment of points - representing
electrons - and their motion around a 2D plane. In the following code described here, the only
imported Python packages neccesary are numpy and matplotlib (for the generation of random
numbers/arrays, and the output of usable plots respectively).

Monte Carlo Simulation

The basis of this simulation work is the Monte Carlo simulation. At its simplest, the Monte Carlo
simulation is about producing random points within a specified boundary and analyzing something
about those points - the most popular example being calculating the value of pi based on the ratio
of points inside and outside of a circle within a square boundary.

Toy Model

In order to begin to explore the real proposed problem, we began by constructing a simulation
with a simpler, more clearly defined structure, deemed the ”toy model”. To begin with, a series of
functions were defined which could be called for different simulation runs. First, a function to cal-
culate the interaction potential, V(r), was created. For the toy model, this was either a continuous
function 1

r3 , or a function of 1
r3 on either side of a flat line between two values of r, r1 and r2.

The purpose of these two basic V(r) functions was to test that the simulation was behaving
according to expectations based on the math and different input parameters.

Next, a function to calculate and return the energy value of the initial, randomized state was
constructed. This function accepts the series of points as an array. Then, a nested for-loop was
written to accept each point in the array, calculate its distance from each other point, and pass that
distance into the V(r) function. Each returned energy value was then added to the previous one to
create a total energy value.

A similar function was constructed in order to calculate the change in energy associated with
changing the position of a specific point. For this to be accomplished, the index of the changed
point is passed in and its initial energy contribution is calculated. Then, the energy contribution
of the new point position is calculated. The change between these values is added to the original
energy value, and then passed back for evaluation.

Once these functions were constructed, a main block of code had to be established to use the
functions to run the simulations. For this, several variables were defined and initialized, which can
be seen in Table 1.

After initiating a set of points, they are fed into the function which calculates the initial energy
value of the entire system, which can be used in the following evaluation to determine whether or
not point moves are accepted later on.



Next, a for-loop was constructed to run for the length of num nudge. In each iteration, a
random number from 0-(num − 1) was generated, which corresponded to the index of a point
within the array, points. Then, to simulate random motion, two more random values are generated,
corresponding to a radius and an angle. This creates a vector, which can be broken into two x
and y values, which can be added to the point at the selected index. Once this new position has
been calculated, the function written to update the energy value can be called to produce a ”U
new” variable, which can be compared to the current energy value. If the new energy is lower
than the current energy, the change is automatically accepted. In order to incorporate the effects
of temperature, a Boltzmann distribution is used to to determine if a higher energy state will be
accepted. The probability is:

exp(
−1∗∆U
T ∗Etyp

)> r (1)

where ∆U is the change in energy, T is the arbitrarily assigned ’temperature’ value, Etyp is the
interaction energy between two points at rtyp, and r is a randomly selected value between 0 and 1.
At 0 T, this simplifies to only accepting moves which lower the energy of the system. Being able to
temporarily raise the energy of the system is desirable in cases where metastable states can arise,
which require an increase in energy to move into the true equilibrium state.

Table 1: Table containing useful variables and their descriptions.

Variable Purpose/Meaning

L Side length of the 2D square plane, boundary for points
num Number of points to be randomly assigned to positions within the plane

num nudge
Number of random moves to be performed, can think of as analogous to ’how
long’ the system is allowed to settle; usually fixed as a scalar × num

points A num × 2 array of random points, basically a list of x and y points

r typ
The ’average’ distance between nearest-neighbour points on the plane, assuming
even distribution

T
The ’temperature’ of the system, which is in arbitrary units but used to simulate
the effect of raising and lowering the system energy, as one would do by changing
temperature

V0 Used to assign the strength of an external potential
k0 Used to determine the frequency of an external potential

alpha
Used to manipulate the appearance of the shoulder potential experienced by the
interaction of the two planes

Extension to Real-World Potentials

Once the toy model was established and tested to determine that it worked properly, the V(r) for-
mula was edited to reflect the relationship from the twisted bi-layer graphene which is graphically
represented in Figure 5. This formula contains a variable, α which is used to manipulate the po-
sition of the right-hand of the shoulder, and the prominence of the shoulder itself. In short, larger
values of α lead to a wider, more prominent shoulder in the potential function.



Addition of a Potential Field

Finally, another function was written to add the energy of the external potential to each point during
the energy calculations. This is where the V0 and k0 are implemented in order to manipulate the
electron formations. The equation used to factor this in was:

u =V0 · sin(kx) · sin(ky) (2)

Where k = n·π/L, and V0 is an arbitrarily assigned field strength.

III Results and Discussion

Toy Model Plots

As expected, when the potential is established to be consistently repulsive without a shoulder, the
result is a Wigner crystal structure at 0 K. One can imagine overlaying the pictured structure with
three different lattice lines, whose overlapping would produce equilateral triangles.

(a) Plot of V(r), on log-log scale, when the po-
tential is simplified to 1

r3 for the toy model.
(b) Electron arrangement fol-
lowing the 1

r3 potential. At 0 K,
this forms a recognizable trian-
gular lattice.

Figure 1: Plot of the simplified potential and resultant e− lattice at 0 K

In addition, the incorporation of an arbitrary temperature unit produces an expected effect.
Here it can be seen that raising said temperature increases the disorder of the system, which is
analogous to melting a crystal structure. A melting temperature of the system seems to appear at
T=1E-2 K, so this temperature value was subsequently used to encourage the formation of non-
Wigner morphologies (which might otherwise be prevented by the metastable nature of the Wigner
crystal structure).

When the toy model was adjusted to create an artificial shoulder potential, it was able to pro-
duce stripes and bubbles. In this small system size, the density of the points determined whether
stripes, bubbles, or Wigner structure would emerge. At extremely high densities, there simply was
not enough space for the electrons to sort themselves into clusters. At low densities, there was
no energetic payoff for this clustering either. The effect of temperature on these formations was
also briefly explored. The established melting temperature was used in many cases to reduce the
possibility of the system being caught in a metastable state.



(a) Simulated structure of the e− around
the assigned Tmelt of the system.

(b) Simulated structure of the e− at a
temperature much greater than Tmelt of
the system.

Figure 2: Raising the value of the arbitrary temperature input created disorder in the resulting e−

structure.

Figure 3: Plot of simplified V(r) plot with shoulder potential present. Diagonal portions trend
down at the same 1

r3 rate as the previous potential plot.

The most important facet of this exploration was the connection to the shape of the potential
plot. As may be expected, the bubbles and stripes had widths and inter-formation spacing of
roughly the same width as the shoulder in the potential.

This information was valuable in addressing the next step of the simulation, wherein the gapped
graphene potential was added for analysis.



(a) Bubble formation of electrons caused by
shoulder potential.

(b) Stripe formation of electrons caused by
shoulder potential

Figure 4: Bubble and stripe formations caused by the toy model shoulder potential.

Slight Shoulder potential and External Potential

When working with the gapped graphene potential, the first step was to model the effects of the
gapped graphene potential alone. As expected, based on visual analysis of the plotted potential,
this did not result in stripe and bubble morphologies. It is worth noting here as well that this also
presented one of the limitations of the set boundary conditions. The slope of this potential is closer
to 1/r than the 1/r3 potential used in the toy model, which appears to have worked with the square
boundaries to produce a square lattice. This suggests it may be worthwhile to attempt modelling
this interaction in a parallelogram-shaped boundary to allow it to form the Wigner crystal structure
again.

The observation of the relationship between shoulder and bubble size led to a formula estab-
lishing the boundary size to be roughly n·α . This was chosen through observation of the plots at
different values of α . It can be seen that the left end of the shoulder remains relatively in the same
position while the right end of the shoulder exists at approximately the value of α . Additionally,
the left hand end of the shoulder is observed to be around 0.1, which is so small in comparison to
the width of the shoulder that it could be estimated the shoulder width was approximately α ar-
bitrary units of distance. This n parameter established how many maxima (and subsequently how
many minima) appear accross the plane. This is important because it ensures that the minima will
have roughly the same width as the shoulder, leading to bubble formation. If the size of the minima
does not line up with the shoulder width, as demonstrated in Figure 8b, then the two forces will
not work together to cause the formation of bubbles. These plots are directly comparable because
while L doubles, the density of particles remains fixed, so that the only meaningful difference
between these two plots is, in fact, that the external potential minima was adjusted to no longer
match the physical spacing for which the particles were primed. None of the simulations run in
this manner was able to produce stripes.



(a) V(r) plotted on a log-log scale with
α=10.

(b) V(r) plotted on a log-log scale with α=100.

Figure 5: Interaction potentials for α = 10, 100. As α increases, the prominence and right curve
of the shoulder increase as well.

Figure 6: Simulation of electrons using gapped graphene potential. As seen here, stripes and
bubbles did not form. Additionally, the electrons fell into a metastable square lattice formation,
which is likely an artifact of the system boundaries.



Figure 7: Representation of the external potential introduced by the substrate. Red squares repre-
sent energy maxima, while blue squares represent energy minima.

(a) Simulation for which n = 4 and L = n·α (b) Simulation for which n = 4 and L = 2·n·α

Figure 8: Simulation of gapped graphene where a) the width of the external potential minima
aligns with the shoulder width and b) the width of the external potential minima is roughly twice
the shoulder width



IV Conclusions

To summarize, this exploration led to an understanding the physical space relationship with the
Law of Interaction plot and stripe/bubble size. Additionally, the inter-electron interactions in
gapped graphene, when compounded with an external interaction potential that aligned well with
the shoulder in the former plot, was able to produce bubbles, but not stripes. Further work should
be done to understand the system more fully, and more clearly establish a relationship between the
two potentials at play, and the distribution of electrons in the system.
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