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ABSTRACT 
 

The dependence on geometrical conditions for inter-phase exchange coupling is explored in 
micromagnetic simulations of two-phase Nd2Fe14B/α-Ferrite nanocomposite thin films. A 
synopsis of the existence of the phenomenon is extrapolated from energy minimization ab 
initio. The effect is studied with in-plane magnetization reversal where optimal conditions are 
determined by nanocrystal shape and array spacing. The effect manifests itself in a multi-step 
demagnetization process which is substantiated visually by Mumax3. The material selection is 
intended to be general and to be expanded for numerous nanocomposites with a hard phase 
matrix and soft phase nanocrystals. Applications toward technology are especially accentuated. 
 
I. Background and Introduction 
 
This REU experience can be summarized 

by three projects within the scope of 
micromagnetic simulation. The first being 
the simulation of a point dipole using Python. 
The second project describes the out-of-plane 
magnetization of a thin film computationally 
and analytically. The third project is the basis 
for the research; computational analysis on 
geometrical effects in two-phase magnetic 
nanocomposites. 
 The simple case of a point dipole is 
explored from an elementary simulation. The 
dipole, however arbitrary, has been chosen to 
be a classical approximation of the magnetic 
dipole moment caused by electron spin. A 
numerical solution is created in Python, and 
a plot is generated in 3-dimensional real 
space to express the magnetic field. Two 
proofs from geometrical derivations are 
included to validate the calculation. 
 Out-of-plane magnetization of a thin film 
is explored for a pseudo-magnetic material. 
The specimen under consideration is 
approximated to a uniformly magnetized, 2-
dimensional, infinite ellipsoid with the 
precession of the magnetization derived 
computationally as well as analytically with 

numerical approximation. The results are 
compared by the angle of the magnetization 
out-of-plane. 
  The forefront of technological innovation 
for nearly a century has been based on binary 
computation and memory storage. As 
transistors have followed the trend of Mohr’s 
Law, scaling effects e.g. tunneling and 
parasitic capacitance will be the limiting 
factor in the performance of future 
computers. It is imperative that research be 
focused on new materials and novel 
phenomena to develop technology for 
neuromorphic and quantum computing. This 
paper explores the effect of the geometry of 
nanocrystals within a magnetic composite 
matrix. The role of exchange coupling is 
explored at interfaces between the two-
phases. Potential applications are in material 
design consideration for implementation into 
devices for magnetic storage and computing.  
 A series of micromagnetic simulations 
were run in Mumax3 to observe the 
precession of the magnetization of a 
nanocomposite. It has been observed by 
micromagnetic simulation that exchange 
coupling occurs between α-ferrite and 
Nd2Fe14B in the case of α-ferrite nanowires 
[1]. It is important to note that in the study by 



Wei Li et. al., the exchange coupling was 
most prominent when the axis of the 
nanowires was orthogonal to the 
magnetocrystalline anisotropy of the hard 
phase. It was observed that the exchange 
coupling occurred most prominently when 
the diameter of the nanowires was less than 
the exchange length of α-Ferrite. A dipolar 
interaction was observed by the perturbation 
of the magnetization of finite elements at the 
end interfaces of the nanowires when the 
demagnetizing field was aligned with the 
easy axis of the hard phase. Experimentally, 
Nd2Fe14B / α-ferrite nano-composites have 
also shown clear indication of exchange 
coupling by remanence enhancing and 
increase of the energy product in single and 
multilayer films [2]. 
 This experiment is expected to display 
enhancement of exchange coupling with 
dumbbell type nanocrystals. As a foundation, 
various structures are simulated including 
quantum dots, nanowires, and cubic grains. 
Geometrical considerations of nanocrystal 
arrays are taken into detailed account by 
Skomski [3]. A void exists within the 
literature of geometrical possibilities for an 
enhancement on exchange coupling in 
nanocomposites. It is the author’s prediction 
that a dumbbell structure will allow for 
greater coupling to occur due to the large 
surface area at the end of the nanocrystal that 
can interact with the hard phase. An 
important consideration upon selecting 
nanocrystal shapes is the demagnetizing 
field. While an ellipsoidal object like a thin 
film experiences a stray field for out-of-plane 
magnetization, a uniformly magnetized 
nanowire experiences a stray field with a 
factor of 2π for any radial direction of 
external magnetic field within the x-y plane. 
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The calculation is simple due to the nanowire 
being treated as an ellipsoid, however for a 
dumbbell structure, the calculation is more 
complex. It can be predicted that the greater 
surface area at the end interfaces of the 
dumbbells will allow for a greater and more 
concentrated build up of magnetic charges. 
The effect of these charges can be observed 
as a dipolar interaction which will perturb the 
magnetization of the hard phase near the end 
interfaces of the nanocrystals. This study 
focuses on these phenomena to optimize the 
performance of nanocomposites by 
increasing coercivity. 
 
II. Methods 
 
 The point dipole experiment was derived 
numerically from 
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where 𝒎𝒎 is the magnetic dipole moment, 𝑟̂𝑟 is 
the radial unit vector, 𝑟𝑟 is the magnitude of 
the radius of a point from the dipole [4]. The 
dipole was modelled on the classical model 
of an electron. The dipole moment caused by 
the electron spin is expressed as 
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where 𝑒𝑒 is the electron charge, 𝑺𝑺 is the spin 
vector, 𝑀𝑀  is the electron mass [5]. A 3-
dimensional grid of evenly spaced points was 
generated in Python. Each of the points was 
defined in cartesian coordinates and 
underwent a transformation to spherical 
coordinates for compatibility. The output was 
then compared with analytical proofs based 
on geometrical considerations. 
 The second experiment studied the 
precession of the magnetization of a thin film 
out-of-plane. The experiment was 
approached by a computational method using 
Mumax3. Mumax3 is a GPU accelerated 



program that is built upon the Landau-
Lifshitz-Gilbert equation for the calculation 
of the precession of the magnetization of 
finite elements [6]. Simplistic calculations 
for the stray field were derived from the 
consideration of a uniformly magnetized 
ellipsoid. In this case, the ellipsoid takes the 
form of a thin film with approximately 
infinite proportions in the x and y directions 
with respect to the thickness (z-direction). 
The stray field can be expressed as 
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where 4𝜋𝜋𝜋𝜋𝑠𝑠  is the saturation magnetization 
in Gauss and 𝜃𝜃  is the angle between the z 
component of magnetization to the plane of 
the film. The initial condition of the thin film 
has a uniform magnetization in the y-
direction. The magnetization is precessed out 
of the film plane with increasing external 
field. Multiple experiments were run with 
varying angles of the external magnetic field 
to the film plane and different values of 
saturation magnetization are used. 
 The experiment was validated by an 
analytical derivation, approximated 
numerically. Given the consideration of the 
Landau-Lifshitz-Gilbert equation 
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where 𝛾𝛾𝐿𝐿𝐿𝐿 is the gyromagnetic ratio and 𝛼𝛼 is 
the Gilbert dampening term. For this case, the 
limit is taken as t→∞, therefore, this lets the 
time rate of change of the magnetization 
vector to be zero at each step of increasing 
external field. This leads to a simple 
analytical expression to describe the 
magnetization of the sample. The 
magnetization vector must be collinear with 
the effective field 
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If the external magnetic field is defined by an 
angle out-of-plane ε, the analytical proof can 
be expressed as 
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This equation must be solved with numerical 
approximation. A simple solution is to let 
𝜃𝜃 ≈ 𝜀𝜀 𝑓𝑓𝑓𝑓𝑓𝑓 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 ≫ 4𝜋𝜋𝑀𝑀𝑠𝑠.  
 For the project exploring exchange 
coupling in nanocomposites, a sample is 
created with the following parameters: length 
and width of 160 nm and thickness of 20 nm, 
soft phase of α-ferrite and hard phase of 
Nd2Fe14B with material parameters provided 
by Wei Li et al. [1]. It should be noted that 
the 4𝜋𝜋𝑀𝑀𝑠𝑠  values of these materials are 
pseudo-realistic to target a large exchange 
length within the soft phase, see Table 1. The 
α-ferrite nanocrystals created were targeted 
to have a radius or thickness less than the 
exchange length to prevent domain formation 
[1].  
 
Phase 4𝜋𝜋𝑀𝑀𝑠𝑠 (G) Aex (A/m) Ku1 (J/m3) 
soft 1700 12.5e-12 4.5e6 𝒋𝒋̂ 
hard 10000 25e-12 -0.048e6 𝒊̂𝒊 

 
Matrix spacing was varied to determine its 
effect on the ability for exchange coupling to 
occur. Patterns of regularly spaced linear and 
rectangular structures were explored with 
nanowire, dumbbell, and cubic and spherical 
quantum dot nanocrystals to determine an 
optimized array condition.  

Table 1. Material values used in the 
simulation. Aex and Ku1 sourced from Wei Li 
et al. 



 The appearance of exchange coupling of 
two-phases of magnetic material must occur 
within the absence of domains for the 
nanocrystalline material and when 
energetically favorable. Therefore, the 
precession must be favorable within the 
nanocrystal to break intra-phase exchange 
interaction in favor of inter-phase exchange. 
This was observed by unanimous switching 
during a full magnetization reversal of a 
sample [1]. The dipolar interaction was 
caused by un-passivated magnetic charges on 
the surface of the nanocrystals and presented 
itself as a two-stage demagnetization process. 
Mumax3 allows a visual representation to 
observe the phenomena. The simulation was 
validated by recreating similar results to 
those found in literature with nanowires. 
 
III.  Results and Discussion  
  
 For the simulation of a point dipole, the 

magnetic field followed the pattern of radial 
planar symmetry with field lines beginning at 
the positive charge and terminating at the 
negative magnetic charge, see figure 1.  
 The validity of the numerical simulation 
was tested with the following concepts. The 
first was the geometrical consideration that at 
a fixed radius r, the magnitude of the 
generated magnetic field along the z-axis will 

be twice that of the same radial distance in the 
x-y plane. The second proof was derived 
from the concept of a uniformly magnetized 

sphere. Along the z-axis, a point on a 
uniformly magnetized sphere will experience 
a dipolar magnetic field that is 2/3 the 
magnitude of the magnetization of a sphere 
of the same size. In this case, both 
analytically derived proofs were found to 
agree with the simulation. 
 The thin film magnetization experiment 
resulted in agreement between computational 
results produced by Mumax3 and the 
numerically approximated analytical proof. 
The experiments were varied by 15⁰ 
intervals, ending at 89.5⁰ to account for 
calculation error. As predicted, the results 
agree within the bounds of 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 ≫ 4𝜋𝜋𝑀𝑀𝑠𝑠 , 
while the analytical derivation deviates 
significantly outside of that condition. It can 
be observed in figure 2 that the curves of each 
method converge as 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 > 4𝜋𝜋𝑀𝑀𝑠𝑠 , and that 
the error is significant for 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 < 4𝜋𝜋𝑀𝑀𝑠𝑠. 
 The simulation of two-phase 
nanocomposites began with an attempt at the 
validation of the experiment by setting 
parameters similar to those of Wei Li et al.  
 

Figure 1. A graphical representation of 
magnetic field lines caused by an electron 
dipole moment in real space (meters).  

Figure 2. Results of computational simulation 
and analytical derivation for the out-of-plane 
magnetization of a thin film. 4πMs = 1000G. 
Crossed lines indicate numerically derived 
results while straight lines are from Mumax3. 



 

 

An array of nanowires of 8 nm in diameter 
were spaced evenly within a thin film and 
subjected to a full magnetization reversal as 
seen in figures 3a-c. A period of the 
magnetization reversal showing a 
perturbation of the dipoles at the end 

interfaces of the nanowires can be observed. 
This period is dominated by dipolar 
interaction caused by built up charges on the 
surfaces of the nanowires. A second stage of 
the magnetization reversal is abrupt and 
consists of the switching of the perturbed 
hard region and the nanocrystals. This 
unanimous switching is indicative of 
exchange coupling between the two-phases. 
Similar effects were observed in this 
experiment and the literature therefore, the 
study was then expanded to find optimum 
geometrical conditions for improving 
magnetic properties. 
 The focus shifted towards optimizing the 
conditions found in the array of nanowires by 
carefully selecting the geometry of the 
nanocrystal phase. Dumbbells were selected 
due to their large surface area at the end 
interfaces. Various simulations were 
conducted with dumbbells corresponding to a 
nanowire length and the coercivity of these 

curves are plotted in figure 4. Note the 
dependence of spacing on the overall 
coercivity of the sample. 
 In all cases, dumbbells were shown to 
improve the coercivity of the nanocomposite. 
In general, the coercivity is strongest at the 
tightest spacing of material. This is 

Figure 3 (a-c) a) An array of 90 nm nanowires 
in a thin film at 1.2 T. b) 90 nm Dumbbells in a 
thin film at 2.4 T. c) Magnetization reversal 
curve starting at -1 M/Ms. Components are 
arranged by contributions of each phase. The 
blue curve is the nanowire sample, and red is 
the dumbbell sample. 

Figure 4. A plot of coercivity varied by spacing 
of nanowire and dumbbell shaped soft 
magnetic phase in nanocomposites. 
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interesting due to the balance of multiple 
effects. The percentage of the sample 
consisting of the soft phase is maximized 
with the tightest spacing. Size 40 and 18 nm 
nanocrystals utilized a 2-dimensional array 
due to the size of the nanocrystals in relation 
to the sample size. The exchange coupling 
between the two-phases is decreased in the 
case of tighter spacing due to the nearest 
neighbor being the same phase in two or more 
locations for every nanocrystal in dumbbells. 
This would imply that the dipolar interaction 
dominates for tight spaced nanocrystal array 
interactions. However, deviations occur due 
to the space available between the slender 
portions of the dumbbells. Since this area of 
the hard phase can interact with the ends of 
the dumbbells, it can provide exceptions to 
the dominance of the dipolar interaction. 
 
IV.  Conclusions 
 
 This paper studied magnetic properties of 
two-phase nanocomposites by using 
Mumax3 for micromagnetic simulation. The 
software was validated by receiving 
comparable results to literature. The work 
was expanded upon by taking different 
geometrical conditions into account for 
studying the prevalence and dominance of 
exchange coupling and dipolar interaction, 
and then studied to find the optimum 
conditions of coercivity in a nanocomposite 
sample. Dumbbell nanocrystals were found 
to optimize exchange coupling in 
nanocomposites when compared to 
nanowires of the same size and spacing. 
Smaller size dumbbells showed a decrease in 
dipole interaction while maintaining a greater 
coercivity due to stronger exchange coupling.  
 It is recommended by the author for 
further investigation from an experimental 
basis. It is clear from simulation that 
geometrical conditions greatly affect the 
observable magnetic material properties of 
nanocomposites.  
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